




免費預(yù)覽已結(jié)束,剩余2頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
二項式定理1二項式定理:,2基本概念:二項式展開式:右邊的多項式叫做的二項展開式。二項式系數(shù):展開式中各項的系數(shù).項數(shù):共項,是關(guān)于與的齊次多項式通項:展開式中的第項叫做二項式展開式的通項。用表示。3注意關(guān)鍵點:項數(shù):展開式中總共有項。順序:注意正確選擇,其順序不能更改。與是不同的。指數(shù):的指數(shù)從逐項減到,是降冪排列。的指數(shù)從逐項減到,是升冪排列。各項的次數(shù)和等于.系數(shù):注意正確區(qū)分二項式系數(shù)與項的系數(shù),二項式系數(shù)依次是項的系數(shù)是與的系數(shù)(包括二項式系數(shù))。4常用的結(jié)論:令 令 5性質(zhì):二項式系數(shù)的對稱性:與首末兩端“對距離”的兩個二項式系數(shù)相等,即,二項式系數(shù)和:令,則二項式系數(shù)的和為, 變形式。奇數(shù)項的二項式系數(shù)和=偶數(shù)項的二項式系數(shù)和:在二項式定理中,令,則,從而得到:奇數(shù)項的系數(shù)和與偶數(shù)項的系數(shù)和:二項式系數(shù)的最大項:如果二項式的冪指數(shù)是偶數(shù)時,則中間一項的二項式系數(shù)取得最大值。 如果二項式的冪指數(shù)是奇數(shù)時,則中間兩項的二項式系數(shù),同時取得最大值。系數(shù)的最大項:求展開式中最大的項,一般采用待定系數(shù)法。設(shè)展開式中各項系數(shù)分別為,設(shè)第項系數(shù)最大,應(yīng)有,從而解出來。6二項式定理的十一種考題的解法:題型一:二項式定理的逆用;例:解:與已知的有一些差距, 練:解:設(shè),則題型二:利用通項公式求的系數(shù);例:在二項式的展開式中倒數(shù)第項的系數(shù)為,求含有的項的系數(shù)?解:由條件知,即,解得,由,由題意,則含有的項是第項,系數(shù)為。練:求展開式中的系數(shù)?解:,令,則故的系數(shù)為。題型三:利用通項公式求常數(shù)項;例:求二項式的展開式中的常數(shù)項?解:,令,得,所以練:求二項式的展開式中的常數(shù)項?解:,令,得,所以練:若的二項展開式中第項為常數(shù)項,則解:,令,得.題型四:利用通項公式,再討論而確定有理數(shù)項;例:求二項式展開式中的有理項?解:,令,()得,所以當(dāng)時,當(dāng)時,。題型五:奇數(shù)項的二項式系數(shù)和=偶數(shù)項的二項式系數(shù)和;例:若展開式中偶數(shù)項系數(shù)和為,求.解:設(shè)展開式中各項系數(shù)依次設(shè)為 ,則有,,則有 將-得: 有題意得,。練:若的展開式中,所有的奇數(shù)項的系數(shù)和為,求它的中間項。解:,解得 所以中間兩個項分別為,題型六:最大系數(shù),最大項;例:已知,若展開式中第項,第項與第項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項的系數(shù)是多少?解:解出,當(dāng)時,展開式中二項式系數(shù)最大的項是,當(dāng)時,展開式中二項式系數(shù)最大的項是,。練:在的展開式中,二項式系數(shù)最大的項是多少?解:二項式的冪指數(shù)是偶數(shù),則中間一項的二項式系數(shù)最大,即,也就是第項。練:在的展開式中,只有第項的二項式最大,則展開式中的常數(shù)項是多少?解:只有第項的二項式最大,則,即,所以展開式中常數(shù)項為第七項等于例:寫出在的展開式中,系數(shù)最大的項?系數(shù)最小的項?解:因為二項式的冪指數(shù)是奇數(shù),所以中間兩項()的二項式系數(shù)相等,且同時取得最大值,從而有的系數(shù)最小,系數(shù)最大。例:若展開式前三項的二項式系數(shù)和等于,求的展開式中系數(shù)最大的項?解:由解出,假設(shè)項最大,化簡得到,又,展開式中系數(shù)最大的項為,有練:在的展開式中系數(shù)最大的項是多少?解:假設(shè)項最大,化簡得到,又,展開式中系數(shù)最大的項為題型七:含有三項變兩項;例:求當(dāng)?shù)恼归_式中的一次項的系數(shù)?解法:,當(dāng)且僅當(dāng)時,的展開式中才有x的一次項,此時,所以得一次項為它的系數(shù)為。解法: 故展開式中含的項為,故展開式中的系數(shù)為240.練:求式子的常數(shù)項?解:,設(shè)第項為常數(shù)項,則,得, .題型八:兩個二項式相乘;例:解: .練:解:.練:解:題型九:奇數(shù)項的系數(shù)和與偶數(shù)項的系數(shù)和;例:解:題型十:賦值法;例:設(shè)二項式的展開式的各項系數(shù)的和為,所有二項式系數(shù)的和為,若,則等于多少?解:若,有, 令得,又,即解得,.練:若的展開式中各項系數(shù)之和為,則展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國2,4-二氯-5-氟苯乙酮數(shù)據(jù)監(jiān)測報告
- 2025至2030年中國高溫燙布市場分析及競爭策略研究報告
- 2025至2030年中國門框式輻射測量儀市場分析及競爭策略研究報告
- 2025至2030年中國針織羊絨圍巾市場分析及競爭策略研究報告
- 2025至2030年中國脈通沖劑市場分析及競爭策略研究報告
- 2025至2030年中國精制復(fù)合紙市場分析及競爭策略研究報告
- 2025至2030年中國白??埵袌龇治黾案偁幉呗匝芯繄蟾?/a>
- 2025至2030年中國比較量儀市場分析及競爭策略研究報告
- 2025至2030年中國早早孕測試盒市場分析及競爭策略研究報告
- 2025至2030年中國手壓式封口機市場分析及競爭策略研究報告
- 高速鐵路接觸網(wǎng)壓接式電連接安裝工法CREC-01-2018-60
- 人教版(2023版)初中語文九年級上冊全冊同步練習(xí)+單元綜合訓(xùn)練+專項訓(xùn)練+期中期未測試合集(含答案)【可編輯可打印】
- 電磁兼容中抗擾度試驗教學(xué)課件
- 中國郵政儲蓄銀行理財考試真題模擬匯編(共719題)
- 醫(yī)務(wù)科崗前培訓(xùn)
- 市政雨污水管道清污清淤工程地下有限空間作業(yè)專項方案2020年10月10
- 醫(yī)療器械行業(yè)市場部人員崗位職責(zé)
- 旅行社導(dǎo)游帶團操作流程
- 部編版小學(xué)道德與法治三年級下冊期末質(zhì)量檢測試卷【含答案】5套
- 怎樣當(dāng)好一名師長
- DB21T 3354-2020 遼寧省綠色建筑設(shè)計標(biāo)準(zhǔn)
評論
0/150
提交評論