八年級(jí)數(shù)學(xué)上冊(cè)幾何添輔助線專題.doc_第1頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)幾何添輔助線專題.doc_第2頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)幾何添輔助線專題.doc_第3頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)幾何添輔助線專題.doc_第4頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)幾何添輔助線專題.doc_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)習(xí)資料收集于網(wǎng)絡(luò),僅供參考全等三角形問(wèn)題中常見(jiàn)的輔助線的作法(有答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。 也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。 角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。 要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。 三角形中兩中點(diǎn),連接則成中位線。 三角形中有中線,延長(zhǎng)中線等中線。1.等腰三角形“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題2.倍長(zhǎng)中線:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形3.角平分線在三種添輔助線4.垂直平分線聯(lián)結(jié)線段兩端5.用“截長(zhǎng)法”或“補(bǔ)短法”: 遇到有二條線段長(zhǎng)之和等于第三條線段的長(zhǎng),6.圖形補(bǔ)全法:有一個(gè)角為60度或120度的把該角添線后構(gòu)成等邊三角形7.角度數(shù)為30、60度的作垂線法:遇到三角形中的一個(gè)角為30度或60度,可以從角一邊上一點(diǎn)向角的另一邊作垂線,目的是構(gòu)成30-60-90的特殊直角三角形,然后計(jì)算邊的長(zhǎng)度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個(gè)角。從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。8.計(jì)算數(shù)值法:遇到等腰直角三角形,正方形時(shí),或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常計(jì)算邊的長(zhǎng)度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個(gè)角,從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。常見(jiàn)輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,二個(gè)角之間的相等。1) 遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”法構(gòu)造全等三角形2) 遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)” 法構(gòu)造全等三角形3) 遇到角平分線在三種添輔助線的方法,(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)常常是角平分線的性質(zhì)定理或逆定理(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一對(duì)全等三角形。4) 過(guò)圖形上某一點(diǎn)作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”5) 截長(zhǎng)法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長(zhǎng),是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說(shuō)明這種作法,適合于證明線段的和、差、倍、分等類的題目6) 已知某線段的垂直平分線,那么可以在垂直平分線上的某點(diǎn)向該線段的兩個(gè)端點(diǎn)作連線,出一對(duì)全等三角形。特殊方法:在求有關(guān)三角形的定值一類的問(wèn)題時(shí),常把某點(diǎn)到原三角形各頂點(diǎn)的線段連接起來(lái),利用三角形面積的知識(shí)解答一、倍長(zhǎng)中線(線段)造全等例1、(“希望杯”試題)已知,如圖ABC中,AB=5,AC=3,則中線AD的取值范圍是_.解:延長(zhǎng)AD至E使AE2AD,連BE,由三角形性質(zhì)知AB-BE 2ADAB+BE 故AD的取值范圍是1AD4例2、如圖,ABC中,E、F分別在AB、AC上,DEDF,D是中點(diǎn),試比較BE+CF與EF的大小.解:(倍長(zhǎng)中線,等腰三角形“三線合一”法)延長(zhǎng)FD至G使FG2EF,連BG,EG,顯然BGFC,在EFG中,注意到DEDF,由等腰三角形的三線合一知EGEF在BEG中,由三角形性質(zhì)知EGBG+BE 故:EFBE+FC例3、如圖,ABC中,BD=DC=AC,E是DC的中點(diǎn),求證:AD平分BAE. 解:延長(zhǎng)AE至G使AG2AE,連BG,DG,顯然DGAC, GDC=ACD由于DC=AC,故 ADC=DAC在ADB與ADG中, BDAC=DG,ADAD,ADB=ADC+ACD=ADC+GDCADG故ADBADG,故有BAD=DAG,即AD平分BAE二、截長(zhǎng)補(bǔ)短1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CDAC解:(截長(zhǎng)法)在AB上取中點(diǎn)F,連FDADB是等腰三角形,F(xiàn)是底AB中點(diǎn),由三線合一知DFAB,故AFD90ADFADC(SAS)ACDAFD90即:CDAC2、如圖,ADBC,EA,EB分別平分DAB,CBA,CD過(guò)點(diǎn)E,求證;ABAD+BC解:(截長(zhǎng)法)在AB上取點(diǎn)F,使AFAD,連FEADEAFE(SAS)ADEAFE,ADE+BCE180AFE+BFE180故ECBEFBFBECBE(AAS)故有BFBC從而;ABAD+BC3、如圖,已知在ABC內(nèi),P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP解:(補(bǔ)短法, 計(jì)算數(shù)值法)延長(zhǎng)AB至D,使BDBP,連DP在等腰BPD中,可得BDP40從而B(niǎo)DP40ACPADPACP(ASA)故ADAC又QBC40QCB 故 BQQCBDBP從而B(niǎo)Q+AQ=AB+BP4、如圖,在四邊形ABCD中,BCBA,ADCD,BD平分,求證: 解:(補(bǔ)短法)延長(zhǎng)BA至F,使BFBC,連FDBDFBDC(SAS)故DFBDCB ,F(xiàn)DDC又ADCD故在等腰BFD中DFBDAF故有BAD+BCD1805、如圖在ABC中,ABAC,12,P為AD上任意一點(diǎn),求證;AB-ACPB-PC解:(補(bǔ)短法)延長(zhǎng)AC至F,使AFAB,連PDABPAFP(SAS)故BPPF由三角形性質(zhì)知PBPCPFPC BF=BA+AF=BA+AC從而PB=BE+CE+BCBF+BC=BA+AC+BC=PA例2 如圖,在ABC的邊上取兩點(diǎn)D、E,且BD=CE,求證:AB+ACAD+AE.證明:取BC中點(diǎn)M,連AM并延長(zhǎng)至N,使MN=AM,連BN,DN. BD=CE,DM=EM,DMNEMA(SAS),DN=AE,同理BN=CA.延長(zhǎng)ND交AB于P,則BN+BPPN,DP+PAAD,相加得BN+BP+DP+PAPN+AD,各減去DP,得BN+ABDN+AD,AB+ACAD+AE。四、借助角平分線造全等1、如圖,已知在ABC中,B=60,ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD,DC+AE =AC證明L(角平分線在三種添輔助線,計(jì)算數(shù)值法)B=60度,則BAC+BCA=120度;AD,CE均為角平分線,則OAC+OCA=60度=AOE=COD;AOC=120度.在AC上截取線段AF=AE,連接OF.又AO=AO;OAE=OAF.則OAEOAF(SAS),OE=OF;AE=AF; AOF=AOE=60度.則COF=AOC-AOF=60度=COD;又CO=CO;OCD=OCF.故OCDOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2、如圖,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)說(shuō)明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的長(zhǎng).解:(垂直平分線聯(lián)結(jié)線段兩端)連接BD,DCDG垂直平分BC,故BDDC由于AD平分BAC, DEAB于E,DFAC于F,故有EDDF故RTDBERTDFC(HL)故有BECF。AB+AC2AEAE(a+b)/2BE=(a-b)/2應(yīng)用:1、如圖,OP是MON的平分線,請(qǐng)你利用該圖形畫(huà)一對(duì)以O(shè)P所在直線為對(duì)稱軸的全等三角形。請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:(1)如圖,在ABC中,ACB是直角,B=60,AD、CE分別是BAC、BCA的平分線,AD、CE相交于點(diǎn)F。請(qǐng)你判斷并寫(xiě)出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMNEBCDFACEFBD圖圖圖(2)如圖,在ABC中,如果ACB不是直角,而(1)中的其它條件不變,請(qǐng)問(wèn),你在(1)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。解:(1)FE與FD之間的數(shù)量關(guān)系為(2)答:(1)中的結(jié)論仍然成立。證法一:如圖1,在AC上截取,連結(jié)FG ,AF為公共邊,F(xiàn)BEACD圖 12143G, ,AD、CE分別是、的平分線及FC為公共邊證法二:如圖2,過(guò)點(diǎn)F分別作于點(diǎn)G,于點(diǎn)H FBEACD圖 22143HG,AD、CE分別是、的平分線可得,F(xiàn)是的內(nèi)心,又 可證 有等腰三角形時(shí)常用的輔助線作頂角的平分線,底邊中線,底邊高線例:已知,如圖,AB = AC,BDAC于D,求證:BAC = 2DBC證明:(方法一)作BAC的平分線AE,交BC于E,則1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)過(guò)A作AEBC于E(過(guò)程略)(方法三)取BC中點(diǎn)E,連結(jié)AE(過(guò)程略)有底邊中點(diǎn)時(shí),常作底邊中線例:已知,如圖,ABC中,AB = AC,D為BC中點(diǎn),DEAB于E,DFAC于F,求證:DE = DF證明:連結(jié)AD.D為BC中點(diǎn),BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題例:已知,如圖,ABC中,AB = AC,在BA延長(zhǎng)線和AC上各取一點(diǎn)E、F,使AE = AF,求證:EFBC證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常過(guò)一腰上的某一已知點(diǎn)做另一腰的平行線例:已知,如圖,在ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線上,且BD = CE,連結(jié)DE交BC于F求證:DF = EF證明:(證法一)過(guò)D作DNAE,交BC于N,則DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = EC DNFECFDF = EF(證法二)過(guò)E作EMAB交BC延長(zhǎng)線于M,則EMB =B(過(guò)程略)常過(guò)一腰上的某一已知點(diǎn)做底的平行線例:已知,如圖,ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線上,且AD = AE,連結(jié)DE求證:DEBC證明:(證法一)過(guò)點(diǎn)E作EFBC交AB于F,則AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(證法二)過(guò)點(diǎn)D作DNBC交CA的延長(zhǎng)線于N,(過(guò)程略)(證法三)過(guò)點(diǎn)A作AMBC交DE于M,(過(guò)程略)常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形-等邊三角形例:已知,如圖,ABC中,AB = AC,BAC = 80o ,P為形內(nèi)一點(diǎn),若PBC = 10o PCB = 30o 求PAB的度數(shù).解法一:以AB為一邊作等邊三角形,連結(jié)CE則BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80ACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC為一邊作等邊三角形,證法同一。解法三:以BC為一邊作等邊三角形BCE,連結(jié)AE,則EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂線上同理A在BC的中垂線上EA所在的直線是BC的中垂線EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BP BAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o 1. 如圖,求ABCDE的度數(shù)。 解:連結(jié)CDECDBDC=BE=180BOE=180CODABACEADBE=AECDBDCACEADB=A(ECDACE)(BDCADB)=AACDADC=180 2. 如圖,已知在ABC中,AD是BC邊上的中線,E是AD上一點(diǎn),且

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論