


全文預覽已結束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
三角函數(shù)公式1、兩角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 2、倍角公式 tan2A = 2tanA/(1-tan2 A) Sin2A=2SinA?CosA Cos2A = Cos2 A-Sin2 A =2Cos2 A1 =12sin2 A 3、三倍角公式 sin3A = 3sinA-4(sinA)3; cos3A = 4(cosA)3 -3cosA tan3a = tan a ? tan(/3+a)? tan(/3-a) 4、半角公式 sin(A/2) = (1-cosA)/2 cos(A/2) = (1+cosA)/2 tan(A/2) = (1-cosA)/(1+cosA) cot(A/2) = (1+cosA)/(1-cosA) tan(A/2) = (1-cosA)/sinA=sinA/(1+cosA) 5、和差化積 sin(a)+sin(b) = 2sin(a+b)/2cos(a-b)/2 sin(a)-sin(b) = 2cos(a+b)/2sin(a-b)/2 cos(a)+cos(b) = 2cos(a+b)/2cos(a-b)/2 cos(a)-cos(b) = -2sin(a+b)/2sin(a-b)/2 tanA+tanB=sin(A+B)/cosAcosB 6、積化和差 sin(a)sin(b) = -1/2*cos(a+b)-cos(a-b) cos(a)cos(b) = 1/2*cos(a+b)+cos(a-b) sin(a)cos(b) = 1/2*sin(a+b)+sin(a-b) cos(a)sin(b) = 1/2*sin(a+b)-sin(a-b) 7、誘導公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(/2-a) = cos(a) cos(/2-a) = sin(a) sin(/2+a) = cos(a) cos(/2+a) = -sin(a) sin(-a) = sin(a) cos(-a) = -cos(a) sin(+a) = -sin(a) cos(+a) = -cos(a) tgA=tanA = sinA/cosA 8、萬能公式 sin(a) = 2tan(a/2) / 1+tan(a/2)2 cos(a) = 1-tan(a/2)2 / 1+tan(a/2)2 tan(a) = 2tan(a/2)/1-tan(a/2)2 9、其它公式 a?sin(a)+b?cos(a) = (a2+b2)*sin(a+c) 其中,tan(c)=b/a a?sin(a)-b?cos(a) = (a2+b2)*cos(a-c) 其中,tan(c)=a/b 1+sin(a) = sin(a/2)+cos(a/2)2; 1-sin(a) = sin(a/2)-cos(a/2)2; 10、其他非重點三角函數(shù) csc(a) = 1/sin(a) sec(a) = 1/cos(a) 11、雙曲函數(shù) sinh(a) = ea-e(-a)/2 cosh(a) = ea+e(-a)/2 tg h(a) = sin h(a)/cos h(a) 12、公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 13、公式二: 設為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的關系: sin()= -sin cos()= -cos tan()= tan cot()= cot 14、公式三: 任意角與 -的三角函數(shù)值之間的關系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 15、公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 16、公式五: 利用公式-和公式三可以得到2-與的三角函數(shù)值之間的關系: sin(2-)=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 責令改正法律適用研究
- SLM成形HfO2@TiCp-GH3536復合材料組織性能研究
- 基于VR-AR的編程課程教學設計與應用研究-以中職C語言為例
- 糖尿病酮癥病人的個案護理
- 婦女兩癌健康知識
- 幼兒健康蔬菜知識啟蒙
- 頜面部骨折護理課件
- 某企業(yè)客戶關系管理分析
- 2025護理質(zhì)量控制計劃
- 傅玄教育思想體系解析
- 村振興產(chǎn)業(yè)融合發(fā)展示范區(qū)建設項目運營管理方案
- 2025年中考物理解題方法復習專題10力學壓軸題的常見解法
- 慈利一中選拔考試題及答案
- 殘疾人護理實操考試題及答案
- DB54∕T 0296-2023 文物古建筑消防安全評估規(guī)范
- 醫(yī)共體醫(yī)保管理工作制度
- 注塑模具保養(yǎng)維修培訓
- 商城周年慶活動方案方案
- 2025新課標教師培訓
- 檢驗科實習生培訓
- 幼兒教育畢業(yè)論文8000字
評論
0/150
提交評論