




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第02講單調(diào)性問題知識點一:單調(diào)性基礎問題1、函數(shù)的單調(diào)性函數(shù)單調(diào)性的判定方法:設函數(shù)SKIPIF1<0在某個區(qū)間內(nèi)可導,如果SKIPIF1<0,則SKIPIF1<0為增函數(shù);如果SKIPIF1<0,則SKIPIF1<0為減函數(shù).2、已知函數(shù)的單調(diào)性問題=1\*GB3①若SKIPIF1<0在某個區(qū)間上單調(diào)遞增,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個區(qū)間上單調(diào)遞增;=2\*GB3②若SKIPIF1<0在某個區(qū)間上單調(diào)遞減,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個區(qū)間上單調(diào)遞減.知識點二:討論單調(diào)區(qū)間問題類型一:不含參數(shù)單調(diào)性討論(1)求導化簡定義域(化簡應先通分,盡可能因式分解;定義域需要注意是否是連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導函數(shù)中未知正負,需要單獨討論的部分.定號部分:已知恒正或恒負,無需單獨討論的部分);(3)求根作圖得結(jié)論(如能直接求出導函數(shù)等于0的根,并能做出導函數(shù)與x軸位置關(guān)系圖,則導函數(shù)正負區(qū)間段已知,可直接得出結(jié)論);(4)未得結(jié)論斷正負(若不能通過第三步直接得出結(jié)論,則先觀察導函數(shù)整體的正負);(5)正負未知看零點(若導函數(shù)正負難判斷,則觀察導函數(shù)零點);(6)一階復雜求二階(找到零點后仍難確定正負區(qū)間段,或一階導函數(shù)無法觀察出零點,則求二階導);求二階導往往需要構(gòu)造新函數(shù),令一階導函數(shù)或一階導函數(shù)中變號部分為新函數(shù),對新函數(shù)再求導.(7)借助二階定區(qū)間(通過二階導正負判斷一階導函數(shù)的單調(diào)性,進而判斷一階導函數(shù)正負區(qū)間段);類型二:含參數(shù)單調(diào)性討論(1)求導化簡定義域(化簡應先通分,然后能因式分解要進行因式分解,定義域需要注意是否是一個連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導函數(shù)中未知正負,需要單獨討論的部分.定號部分:已知恒正或恒負,無需單獨討論的部分);(3)恒正恒負先討論(變號部分因為參數(shù)的取值恒正恒負);然后再求有效根;(4)根的分布來定參(此處需要從兩方面考慮:根是否在定義域內(nèi)和多根之間的大小關(guān)系);(5)導數(shù)圖像定區(qū)間;【解題方法總結(jié)】1、求可導函數(shù)單調(diào)區(qū)間的一般步驟(1)確定函數(shù)SKIPIF1<0的定義域;(2)求SKIPIF1<0,令SKIPIF1<0,解此方程,求出它在定義域內(nèi)的一切實數(shù);(3)把函數(shù)SKIPIF1<0的間斷點(即SKIPIF1<0的無定義點)的橫坐標和SKIPIF1<0的各實根按由小到大的順序排列起來,然后用這些點把函數(shù)SKIPIF1<0的定義域分成若干個小區(qū)間;(4)確定SKIPIF1<0在各小區(qū)間內(nèi)的符號,根據(jù)SKIPIF1<0的符號判斷函數(shù)SKIPIF1<0在每個相應小區(qū)間內(nèi)的增減性.注:①使SKIPIF1<0的離散點不影響函數(shù)的單調(diào)性,即當SKIPIF1<0在某個區(qū)間內(nèi)離散點處為零,在其余點處均為正(或負)時,SKIPIF1<0在這個區(qū)間上仍舊是單調(diào)遞增(或遞減)的.例如,在SKIPIF1<0上,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,而顯然SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù).②若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.因為SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.當SKIPIF1<0時,SKIPIF1<0在這個區(qū)間為常值函數(shù);同理,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.這說明在一個區(qū)間上函數(shù)的導數(shù)大于零,是這個函數(shù)在該區(qū)間上單調(diào)遞增的充分不必要條件.于是有如下結(jié)論:SKIPIF1<0SKIPIF1<0單調(diào)遞增;SKIPIF1<0單調(diào)遞增SKIPIF1<0;SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞減SKIPIF1<0.題型一:利用導函數(shù)與原函數(shù)的關(guān)系確定原函數(shù)圖像【例1】(2023·全國·高三專題練習)設SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象最有可能的是(
)A. B.C. D.【答案】C【解析】由導函數(shù)的圖象可得當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.只有C選項的圖象符合.故選:C.【對點訓練1】(多選題)(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0且導函數(shù)為SKIPIF1<0,如圖是函數(shù)SKIPIF1<0的圖像,則下列說法正確的是A.函數(shù)SKIPIF1<0的增區(qū)間是SKIPIF1<0B.函數(shù)SKIPIF1<0的增區(qū)間是SKIPIF1<0C.SKIPIF1<0是函數(shù)的極小值點D.SKIPIF1<0是函數(shù)的極小值點【答案】BD【解析】先由題中圖像,確定SKIPIF1<0的正負,得到函數(shù)SKIPIF1<0的單調(diào)性;從而可得出函數(shù)極大值點與極小值點,進而可得出結(jié)果.由題意,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;即函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,因此函數(shù)SKIPIF1<0在SKIPIF1<0時取得極小值,在SKIPIF1<0時取得極大值;故A錯,B正確;C錯,D正確.故選:BD.【對點訓練2】(2023·黑龍江齊齊哈爾·統(tǒng)考二模)已知函數(shù)SKIPIF1<0的圖象如圖所示(其中SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù)),下面四個圖象中可能是SKIPIF1<0圖象的是(
)A. B.C. D.【答案】C【解析】由SKIPIF1<0的圖象知,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,等號僅有可能在x=0處取得,所以SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0單調(diào)遞增,結(jié)合選項只有C符合.故選:C.【對點訓練3】(2023·陜西西安·校聯(lián)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的大致圖像如圖所示,SKIPIF1<0是SKIPIF1<0的導函數(shù),則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】若SKIPIF1<0,則SKIPIF1<0單調(diào)遞減,圖像可知,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,由圖像可知SKIPIF1<0,故不等式SKIPIF1<0的解集為SKIPIF1<0.故選:C【解題方法總結(jié)】原函數(shù)的單調(diào)性與導函數(shù)的函數(shù)值的符號的關(guān)系,原函數(shù)SKIPIF1<0單調(diào)遞增SKIPIF1<0導函數(shù)SKIPIF1<0(導函數(shù)等于0,只在離散點成立,其余點滿足SKIPIF1<0);原函數(shù)單調(diào)遞減SKIPIF1<0導函數(shù)SKIPIF1<0(導函數(shù)等于0,只在離散點成立,其余點滿足SKIPIF1<0).題型二:求單調(diào)區(qū)間【例2】(2023·江西鷹潭·高三貴溪市實驗中學校考階段練習)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】函數(shù)的定義域為SKIPIF1<0.SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0.故選:D【對點訓練4】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0()A.嚴格增函數(shù)B.在SKIPIF1<0上是嚴格增函數(shù),在SKIPIF1<0上是嚴格減函數(shù)C.嚴格減函數(shù)D.在SKIPIF1<0上是嚴格減函數(shù),在SKIPIF1<0上是嚴格增函數(shù)【答案】D【解析】已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以在SKIPIF1<0上是嚴格減函數(shù),當SKIPIF1<0時,SKIPIF1<0,所以在SKIPIF1<0上是嚴格增函數(shù),故選:D.【對點訓練5】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.求導可得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,由函數(shù)定義域可知,SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0.故選:A.【對點訓練6】(2023·高三課時練習)函數(shù)SKIPIF1<0(a、b為正數(shù))的嚴格減區(qū)間是(
).A.SKIPIF1<0 B.SKIPIF1<0與SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題得SKIPIF1<0.由SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0.所以函數(shù)SKIPIF1<0的嚴格減區(qū)間是SKIPIF1<0與SKIPIF1<0.選項D,本題的兩個單調(diào)區(qū)間之間不能用“SKIPIF1<0”連接,所以該選項錯誤.故選:C【解題方法總結(jié)】求函數(shù)的單調(diào)區(qū)間的步驟如下:(1)求SKIPIF1<0的定義域(2)求出SKIPIF1<0.(3)令SKIPIF1<0,求出其全部根,把全部的根在SKIPIF1<0軸上標出,穿針引線.(4)在定義域內(nèi),令SKIPIF1<0,解出SKIPIF1<0的取值范圍,得函數(shù)的單調(diào)遞增區(qū)間;令SKIPIF1<0,解出SKIPIF1<0的取值范圍,得函數(shù)的單調(diào)遞減區(qū)間.若一個函數(shù)具有相同單調(diào)性的區(qū)間不只一個,則這些單調(diào)區(qū)間不能用“SKIPIF1<0”、“或”連接,而應用“和”、“,”隔開.題型三:已知含量參函數(shù)在區(qū)間上單調(diào)或不單調(diào)或存在單調(diào)區(qū)間,求參數(shù)范圍【例3】(2023·寧夏銀川·銀川一中??既#┤艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.m>1【答案】B【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),所以SKIPIF1<0,解得:SKIPIF1<0故選:B.【對點訓練7】(2023·陜西西安·統(tǒng)考三模)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B【對點訓練8】(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0且SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上遞減,在SKIPIF1<0上遞增,當SKIPIF1<0時,SKIPIF1<0為增函數(shù),且函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0恒成立,當SKIPIF1<0時,SKIPIF1<0為減函數(shù),且函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,所以SKIPIF1<0,無解,綜上所述,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【對點訓練9】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由題意,SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以在SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故選:B【對點訓練10】(2023·全國·高三專題練習)三次函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】對函數(shù)SKIPIF1<0求導,得SKIPIF1<0因為函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0恒成立,當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0恒成立;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;又因為當SKIPIF1<0時,SKIPIF1<0不是三次函數(shù),不滿足題意,所以SKIPIF1<0.故選:A.【對點訓練11】(2023·青海西寧·高三??奸_學考試)已知函數(shù)SKIPIF1<0.若對任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)題意,不妨取SKIPIF1<0,則SKIPIF1<0可轉(zhuǎn)化為SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則對任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即實數(shù)a的取值范圍是SKIPIF1<0,故選:A【對點訓練12】(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】∵SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,則SKIPIF1<0有解,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,故SKIPIF1<0.故選:D.【對點訓練13】(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0在其定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去),因為SKIPIF1<0在定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),所以SKIPIF1<0,得SKIPIF1<0,綜上,SKIPIF1<0,故選:D【對點訓練14】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0(SKIPIF1<0)在區(qū)間SKIPIF1<0上存在單調(diào)遞增區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間,SKIPIF1<0函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在子區(qū)間使得不等式SKIPIF1<0成立.SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0,故選B.考點:導數(shù)的應用.【例4】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以方程SKIPIF1<0的兩個根分別位于區(qū)間SKIPIF1<0和SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0.故選:A.【對點訓練15】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,則SKIPIF1<0(
)A.3 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【解析】函數(shù)SKIPIF1<0,則導數(shù)SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,∴0,4是方程SKIPIF1<0的兩根,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0故選:B.【解題方法總結(jié)】(1)已知函數(shù)在區(qū)間上單調(diào)遞增或單調(diào)遞減,轉(zhuǎn)化為導函數(shù)恒大于等于或恒小于等于零求解,先分析導函數(shù)的形式及圖像特點,如一次函數(shù)最值落在端點,開口向上的拋物線最大值落在端點,開口向下的拋物線最小值落在端點等.(2)已知區(qū)間上函數(shù)不單調(diào),轉(zhuǎn)化為導數(shù)在區(qū)間內(nèi)存在變號零點,通常用分離變量法求解參變量范圍.(3)已知函數(shù)在區(qū)間上存在單調(diào)遞增或遞減區(qū)間,轉(zhuǎn)化為導函數(shù)在區(qū)間上大于零或小于零有解.題型四:不含參數(shù)單調(diào)性討論【例5】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.試判斷函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)性并證明你的結(jié)論;【解析】函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),證明如下:因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù).【對點訓練16】(2023·廣東深圳·高三深圳外國語學校??茧A段練習)已知SKIPIF1<0若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;【解析】若SKIPIF1<0,則SKIPIF1<0,求導得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;在SKIPIF1<0上單調(diào)遞增.【對點訓練17】(2023·貴州·校聯(lián)考二模)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)討論SKIPIF1<0在SKIPIF1<0上的單調(diào)性.【解析】(1)SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴曲線SKIPIF1<0在點SKIPIF1<0處的切線方程是SKIPIF1<0,即SKIPIF1<0;(2)令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞減,且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,∴SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立,顯然,等號不成立,故SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上是減函數(shù).【對點訓練18】(2023·湖南長沙·高三長沙一中??茧A段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求a的取值范圍;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性;【解析】(1)由題意知SKIPIF1<0的定義域為R.①當SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,因此SKIPIF1<0.②當SKIPIF1<0時,若SKIPIF1<0,因為SKIPIF1<0,不合題意.所以SKIPIF1<0,此時SKIPIF1<0恒成立.③當SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0.綜上可得,a的取值范圍是SKIPIF1<0.(2)設SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立.所以SKIPIF1<0.又由(1)知SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.【對點訓練19】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.判斷SKIPIF1<0的單調(diào)性,并說明理由;【解析】SKIPIF1<0令SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.【解題方法總結(jié)】確定不含參的函數(shù)的單調(diào)性,按照判斷函數(shù)單調(diào)性的步驟即可,但應注意一是不能漏掉求函數(shù)的定義域,二是函數(shù)的單調(diào)區(qū)間不能用并集,要用“逗號”或“和”隔開.題型五:含參數(shù)單調(diào)性討論情形一:函數(shù)為一次函數(shù)【例6】(2023·山東聊城·統(tǒng)考三模)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【解析】SKIPIF1<0,SKIPIF1<0,①當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增.②當SKIPIF1<0,即SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增;在區(qū)間SKIPIF1<0單調(diào)遞減.③當SKIPIF1<0,即SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增.若SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減;在區(qū)間SKIPIF1<0單調(diào)遞增.綜上,SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增;在區(qū)間SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減、在區(qū)間SKIPIF1<0單調(diào)遞增.【對點訓練20】(2023·湖北黃岡·黃岡中學校考二模)已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【解析】SKIPIF1<0的定義域為SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞增;若SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0(舍去)當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,【對點訓練21】(2023·全國·模擬預測)已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【解析】因為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,即SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.【對點訓練22】(2023·福建泉州·泉州五中??寄M預測)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【解析】由函數(shù)SKIPIF1<0,可得SKIPIF1<0,設SKIPIF1<0,可得SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;②當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.情形二:函數(shù)為準一次函數(shù)【對點訓練23】(2023·云南師大附中高三階段練習)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0,則有當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【對點訓練24】(2023·北京·統(tǒng)考模擬預測)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)設SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性;【解析】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0切點坐標為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0切線斜率為SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0在SKIPIF1<0處切線方程為:SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0成立,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,無單調(diào)遞增區(qū)間.②當SKIPIF1<0時,令SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增綜上:SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,無單調(diào)遞增區(qū)間;SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;【對點訓練25】(2023·陜西安康·高三陜西省安康中學??茧A段練習)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【解析】∵SKIPIF1<0,∴SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0恒成立,此時SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.綜上所述,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.情形三:函數(shù)為二次函數(shù)型方向1、可因式分解【對點訓練26】(2023·山東濟寧·嘉祥縣第一中學統(tǒng)考三模)已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【解析】因為SKIPIF1<0,該函數(shù)的定義域為SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0或SKIPIF1<0.①當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0對任意的SKIPIF1<0恒成立,且SKIPIF1<0不恒為零,此時,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,無減區(qū)間;②當SKIPIF1<0,即SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0.此時,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0;③當SKIPIF1<0,即SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0.此時函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0.綜上所述:當SKIPIF1<0時,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,無減區(qū)間;當SKIPIF1<0時,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0;當SKIPIF1<0時,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0.【對點訓練27】(2023·湖北咸寧·??寄M預測)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.①若SKIPIF1<0時,SKIPIF1<01SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0-0+0-SKIPIF1<0SKIPIF1<0極小值SKIPIF1<0極大值SKIPIF1<0②若SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0單調(diào)遞減,③若SKIPIF1<0時SKIPIF1<0SKIPIF1<0SKIPIF1<01SKIPIF1<0SKIPIF1<0-0+0-SKIPIF1<0SKIPIF1<0極小值SKIPIF1<0極大值SKIPIF1<0④若SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0單調(diào)遞增.綜上所述,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增.【對點訓練28】(2023·北京海淀·高三專題練習)設函數(shù)SKIPIF1<0.(1)若曲線SKIPIF1<0在點SKIPIF1<0處的切線與SKIPIF1<0軸平行,求SKIPIF1<0;(2)求SKIPIF1<0的單調(diào)區(qū)間.【解析】(1)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.SKIPIF1<0.由題設知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.此時SKIPIF1<0.所以SKIPIF1<0的值為1(2)由(1)得SKIPIF1<0.1)當SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞增極大值單調(diào)遞減2)當SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或2①當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<02SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<00SKIPIF1<0SKIPIF1<0單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減②當SKIPIF1<0時,(?。┊擲KIPIF1<0即SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<02SKIPIF1<0SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡安全等級保護測評與安全咨詢及解決方案合同
- 殘疾人藝術(shù)創(chuàng)作兼職就業(yè)合同
- 物價指數(shù)聯(lián)動子女養(yǎng)育金調(diào)整協(xié)議
- 展會現(xiàn)場安保人員崗位聘用與職業(yè)素養(yǎng)協(xié)議
- 電信基站建筑弱電系統(tǒng)維護保養(yǎng)與故障排除合同
- 模擬GC-LGN-V1-V2視皮層神經(jīng)機制的輕量化輪廓檢測模型
- 模具驗收與產(chǎn)業(yè)生態(tài)構(gòu)建協(xié)議
- 面向人機協(xié)作的機械臂自適應阻抗控制方法研究
- 行政法學科研參考及試題答案分享
- 2025年執(zhí)業(yè)藥師考試名詞解析試題及答案
- 語文綜合實踐:走進傳統(tǒng)節(jié)日探尋文化根脈 課件-【中職專用】高一語文同步課堂(高教版2023基礎模塊下冊)
- 教師課堂教學評價標準
- 去極端化教育宣講
- 光伏防火培訓課件
- 家長講堂:法制主題教育
- 腫瘤科進修心得體會護理
- 第五單元 生物與環(huán)境 大單元教學設計-2023-2024學年科學四年級下冊蘇教版
- 生長激素在臨床中的應用
- 武漢市2025屆高中畢業(yè)生二月調(diào)模擬卷試題
- 衛(wèi)生監(jiān)督信息員培訓課件
- 杜邦分析法公式
評論
0/150
提交評論