




已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄1翻譯原文及譯文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.錯(cuò)誤!未定義書簽。7.3AutomaticNoveltyDetection.錯(cuò)誤!未定義書簽。7.4ConclusionofAnalysisI-Visualisation.錯(cuò)誤!未定義書簽。8AnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。8.1ConstructingSignatures.錯(cuò)誤!未定義書簽。8.2VisualisingSignatures.錯(cuò)誤!未定義書簽。8.3ConclusionofAnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。9AnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。9.1ConstructingaTemplateofNormality.錯(cuò)誤!未定義書簽。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.錯(cuò)誤!未定義書簽。9.3ConclusionofAnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。10AnalysisIV-None-linearPrediction.錯(cuò)誤!未定義書簽。10.1NeuralNetworksforOn-LinePrediction.錯(cuò)誤!未定義書簽。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.錯(cuò)誤!未定義書簽。10.3ConclusionofAnalysisIV-Non-linearPrediction.錯(cuò)誤!未定義書簽。11OverallConclusion.錯(cuò)誤!未定義書簽。11.1Methodology.錯(cuò)誤!未定義書簽。11.2SummaryofTesults.錯(cuò)誤!未定義書簽。11.3FutureWork.錯(cuò)誤!未定義書簽。12AppendixA-NeuroScaleVisualisations.錯(cuò)誤!未定義書簽。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“l(fā)andspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 楓楊外國(guó)語數(shù)學(xué)試卷
- 高三徐州數(shù)學(xué)試卷
- 撫順中考四模數(shù)學(xué)試卷
- 肝功能課件教學(xué)課件
- 高2寒假數(shù)學(xué)試卷
- 第一次全國(guó)高考數(shù)學(xué)試卷
- 肛腸護(hù)理課件
- 肉類罐頭加工技術(shù)
- 2025至2030船用交流發(fā)電機(jī)和電動(dòng)機(jī)行業(yè)市場(chǎng)深度研究與戰(zhàn)略咨詢分析報(bào)告
- 2025至2030畜產(chǎn)品產(chǎn)業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與發(fā)展趨勢(shì)分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 拉薩市墨竹工卡縣思金拉措小學(xué)-2025年春季英語教研組工作總結(jié)-一路求索不停歇【課件】
- 山東省菏澤市2023?2024學(xué)年高一下學(xué)期7月期末考試 數(shù)學(xué)試題(含解析)
- 防洪防汛安全知識(shí)試題及答案
- (三級(jí))人工智能訓(xùn)練師職業(yè)技能鑒定理論考試題(附答案)
- 2025杭州市臨安區(qū)事業(yè)單位招聘80人考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(鞏固)
- 2025年北京二十中中考英語零模試卷
- 護(hù)理服務(wù)質(zhì)量提升路徑與實(shí)踐
- 產(chǎn)科促宮縮藥
- 糞肥還田協(xié)議書范本
- 商務(wù)數(shù)據(jù)分析-形考作業(yè)4(第5章)-國(guó)開(ZJ)-參考資料
- 有機(jī)合成與推斷綜合大題(解析版)
評(píng)論
0/150
提交評(píng)論