




已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
INSTITUTEOFPHYSICSPUBLISHINGJOURNALOFMICROMECHANICSANDMICROENGINEERINGJ.Micromech.Microeng.14(2004)415422PII:S0960-1317(04)69783-XImplementationandanalysisofpolymericmicrostructurereplicationbymicroinjectionmoldingYu-ChuanSu1,2,JatanShah3andLiweiLin1,21BerkeleySensor&ActuatorCenter,UniversityofCalifornia,Berkeley,CA94720,USA2DepartmentofMechanicalEngineering,UniversityofCalifornia,Berkeley,CA94720,USA3DepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48105,USAE-mail:Received30September2003Published17December2003O/JMM/14/415(DOI:10.1088/0960-1317/14/3/015)AbstractThispaperpresentstheadaptationofaconventionalinjectionmoldingprocesstothemassreplicationofpolymericmicrostructureswithappropriatemolddesignandprocesscontrol.Usingwet-etchedsiliconwaferswithmicrostructuresonthesurfacesasmoldinserts,wehavesuccessfullypredicted,improvedandoptimizedthereplicationresults.Theflowbehaviorsofpolymermeltsinmicromold-cavitiesarecharacterizedbybothsimulationandexperiments.Amongvariousprocessparameters,temperatureisidentifiedasthekeyfactorthatdecisivelydeterminesthequalityofinjection-moldedmicrostructures.Basedonthecollectedexperimentalandsimulationresults,processoptimizationisperformedtoimprovereplicationqualityandtoestablishguidelinesforpotentialapplications.Becauseofitshighspeedandlowcost,theadaptationoftheinjectionmoldingprocesstomicrofabricationwillleadtoapromisingtechnologyforMEMSapplications.1.IntroductionBecauseoftheiruniqueproperties,polymershavebeenincreasinglyusedinawiderangeofapplicationsincludingbothmacro-andmicro-devices.InordertoexpandthefieldofMEMStopolymer-baseddevices,itisimportanttointroduceeffectivetechniquesforthefabricationofpolymericmicrostructuresatalowcostandwithhighprecision.Inrecentyears,anumberoftechnologiesforpolymericmicrostructurereplicationhavebeenproposed,includingtheLIGAprocess1,2thatuseseitherhotembossing3orinjectionmolding4toduplicatepolymericmicrostructures.Usingmoldinsertsfabricatedbyx-raylithography,theLIGAprocessprovidesthepossibilitytomanufacturemicrostructureswitharbitrarylateralgeometryandhighdepthforhighaspectratiodevicesfromavarietyofmaterialssuchasmetals,polymersandceramicsbyvariousmoldingprocesses.Amongdifferentmoldingtechniques,injectionmoldingisthemostprominentonewithadvantagesoflowcostandhighprecisionformassproduction.Successfulresultsforthereplicationofpolymericmicrostructureshavebeenachievedbyusingspecialinjectionmoldingprocesses512andconventionalCD-injectionmoldingtechniques13,14.However,theflowbehaviorsofpolymermeltsinmicromold-cavitiesarenotfullyunderstood.Itisbelievedthatduetothelargesurface-to-volumeratio,surfaceeffectswilldominatetheflowbehavioratthemicroscale15.Thispaperaimstoinvestigatetheflowbehaviorofpolymermeltinthemicromold-cavityanddeterminethenecessarystrategiestoadaptthetraditionalinjectionmoldingprocessforthereplicationofpolymericmicrostructures.First,thedirectapplicationoftheconventionalinjectionmoldingprocessinthereplicationofpolymericmicrostructuresisanalyzedusingasimulationsoftwareC-MOLD16.Differentcombinationsofprocessparametersarethensimulatedtoinvestigatetheflowbehaviorofpolymermelt,therelationshipbetweenprocessparametersandthequalityofmoldedmicrostructures.Usingtheseresults,themostsignificantparameterscanbeidentifiedandpossibleprocessingstrategiescanbeproposedandsimulatedtotestthefeasibility.Finally,0960-1317/04/030415+08$30.002004IOPPublishingLtdPrintedintheUK415Y-CSuetal2bxyzyzVelocityprofilePolymermeltPressureandmaterialsupplyFigure1.Schematicofpolymermeltflowinginathincavity.thesestrategiesareappliedinmoldtrialstoevaluatetheirvalidity.2.TheoreticalmodelsBecausemostinjectionmoldedpolymericpartshavecomplicatedthree-dimensional(3D)configurationsandtherheologicalresponseofpolymermeltisgenerallynon-Newtonianandnon-isothermal,itisextremelydifficulttoanalyzethefillingprocesswithoutsimplifications.ThegeneralizedHele-Shaw(GHS)flowmodelintroducedbyHieberandShen17isthemostcommonapproximationthatprovidessimplifiedgoverningequationsfornon-isothermal,non-Newtonianandinelasticflowsinathincavity,asshowninfigure1.TheassumptionsoftheGHSflowmodelare(1)Thethicknessofthecavityismuchsmallerthantheotherdimensions.(2)Thevelocitycomponentinthedirectionofthicknessisneglected,andpressureisafunctionofxandyonly.(3)TheflowregionsareconsideredtobefullydevelopedHele-Shawflowsinwhichinertiaandgravitationalforcesaremuchsmallerthanviscousforces.(4)Theflowkinematicsisshear-dominatedandtheshearviscosityistakentobebothtemperatureandshearratedependent.ThedetailedderivationshavebeendevelopedbyHieberandShen,andtheseassumptionsapplywellforthemicroinjectionmoldingprocess.Inviewoftheseassumptionsandneglectingcompressibilityduringthefillingstages,themomentumequationintheCartesiancoordinatesystemreducesto17zbracketleftbiggvxzbracketrightbigg=Pxzbracketleftbiggvyzbracketrightbigg=Py(1)wherevxandvyarevelocitycomponentsinthexandydirections,respectively;P(x,y)isthepressure,(prime,T)istheshearviscosity,primeistheshearrateandTistemperature.Underthepresentassumptions,primeisgivenbyprime=braceleftBiggbracketleftbiggvxzbracketrightbigg2+bracketleftbiggvyzbracketrightbigg2bracerightBigg1/2.(2)Applyingthelubricationapproximation,thethickness-averagedcontinuityequationresultsin(bvx)x+(bvy)y=0(3)wherevxandvyareaveragedvelocitiesoverz,andbishalfofthethickness.Afterseveralderivativesteps,thegoverningequationfortheflowofthepolymermeltcanbereducedtothecelebratedReynoldsequation:xbracketleftbiggSPxbracketrightbigg+ybracketleftbiggSPybracketrightbigg=0(4)whereSistheflowconductancewhichisdefinedasS=integraldisplayb0z2dz.(5)Thevelocitiesandshearratecanbeobtainedasvx=Lambda1xintegraldisplaybzz1dz1vy=Lambda1yintegraldisplaybzz1dz1prime=zLambda1(6)whereLambda1x=Px,Lambda1y=PyandLambda1=bracketleftbigLambda12x+Lambda12ybracketrightbig1/2.Becauseofthetemperaturedifferencebetweenmoldandpolymermeltandtheviscousheatinginsidetheflow,thefillingprocessshouldbetreatedasanon-isothermalcase.Heatconductioninthedirectionofflowisneglectedbasedontheassumptionthatthethickness2bismuchsmallerthantheothertwodimensions.TheenergyequationinthemeltregionbecomescpbracketleftbiggTt+vxTx+vyTybracketrightbigg=k2Tz2+prime2(7)wheretheprime2istheviscousheatingterm,and,cpandkaredensity,specificheatandthermalconductivity,respectively.Forsimplicity,itisassumedthatthevelocityandtemperaturearesymmetricinthezdirection,thevelocitiesofpolymermeltonthemoldsurfacesarezeroandthetemperatureofmoldremainsatTwduringfilling.Theboundaryconditionsaregivenbyvx=vy=0atz=bvxz=vyz=0atz=0T=Twatz=bTz=0atz=0.(8)Ascanbeseen,theequationsofthismodelarenonlinearandcoupled.Itisdifficulttosolvetheseequationsanalytically.Inthispaper,simulationsoftwareC-MOLDthatemploysnumericalsolversbasedonahybridfiniteelement/finitedifferencemethodisusedtosolvethepressure,velocityandtemperaturefieldsoftheGHSmodel.Becauseoftheseapproximations,aGHSmodelcannotpredicttheexactflowfieldneartheadvancingflowfrontorattheedgesofthemold.Thismightcauseerrorsinpredictingtheflowbehaviornearmicroscalemoldcavities.3.DesignandfabricationofmoldingapparatusAnaluminummoldismanufacturedforthereplicationprocess.Theschematicdiagramandaphotographofthealuminummold,whichconsistsofcavityandcorehalves,areshowninfigure2.Thecavityhalfincorporatesthecavityinwhichamoldinsertiskept.A4-inchsilicon416ImplementationandanalysisofpolymericmicrostructurereplicationbymicroinjectionmoldingMountingplateStripperplateMoldinsert(Siliconwafer)MountingplateCorehousingplateSprueCavityhousingplateInsulationlayerHeaterBaseplateFigure2.Injectionmoldset-up.Figure3.Microstructuresonasiliconmoldinsert.waferwithbulkmicromachinedmicrostructuresisusedasthemoldinsert.Figure3showsthesiliconmicromold-insertthatisetchedtohaveacavitydepthof110m.Thesquarecavitieshaveopeningsof320m,160m,80mand40mandareetchedbymeansofanisotropicsiliconetchinginTMAH(tetramethyl-ammoniumhydroxide).Aheaterisinstalledintheinjectionmoldtocontrolthetemperatureduringthemoldingprocess.Tohavebetterthermalconductivityandshortercoolingtime,weemployedanaluminummoldthatisalsoeasiertomanufactureandmodify.Inaddition,withappropriatethermalinsulationandacoolingsystem,theproblemofdimensionalvariationcausedbythermalexpansioncanbecontrolledandanaluminummoldcanbeusedasamoreeconomicaltoolforthereplicationprocess.Themoldedcomponentcanberemovedfromthemoldmanuallyorbyusingtheejectionsystem.Unliketheprocessesdescribedinthepreviousliterature,asiliconwaferthatservesasthemoldinsertisplacedinthemoldcavity.Usingsiliconwaferasmoldinserthastheadvantageofshortturnaroundtime.Inaddition,thewearofasiliconmoldinsertismuchsmallerascomparedtoatraditionalnickeltool18.However,asiliconmoldinsertismorebrittlethananickelone.Toavoidthebreakageofthewaferduringthemoldingprocess,theedgeofsiliconwafershouldmatchthecavityboundary.Agapbetweenthemoldinsertandcavitycanallowpolymermelttosolidifywithin,whichwouldeventuallyliftthewaferFigure4.ArburgAllrounder221M350-75injectionmoldingmachine.fromthecavityduringmoldopeningandresultinthebreakageofthewafer.4.ExperimentsAnArburgAllrounder221M350-75conventionalinjectionmoldingmachine,asshowninfigure4,withasinglecavity,coldrunnermoldisemployed.ThematerialusedformoldtrialsisBayerMakrolon2205polycarbonate(PC)thermoplasticresin.Becauseofitsexcellentoptical,chemicalandmechanicalproperties,PCcanbeusedinapplicationssuchasmedicalinstruments,biochemicalsensorsanddatastoragesystems.Thepolymerisinjectedintothemoldcavityatapressurerangingfrom40to50MPa.Themelttemperatureinthefeedingzoneismaintainedatabout300C.Themoldtemperatureiscontrolledbyaheaterandmaintainedatatemperaturelowerthan200C.Thecycletimeofthemoldingprocessis65s,andpolymermeltandmoldareallowedtocooldownfor30safterthefillingstage.Figure5showsthetypicalpressureversustimeandcorrespondingflowrateversustimerelationshipofthemoldingprocess.Forthemicro-moldingprocess,injectionpressure,moldtemperatureand417Y-CSuetalHolding0t1t2t30t1t2t3InjectionPackingHoldingInjectionPackingTimeTimePressureFlowrateFigure5.Typicalpressureversustimeandcorrespondingflowrateversustimerelationshipsduringtheinjectionmoldingprocess.Figure6.SEMmicrographofmoldingresults(injectionpressure45MPa,moldtemperature25C).injectionvelocityarerecognizedasthedrivingparameters.Thedepth-to-openingratiosofmoldedmicrostructuresareusedtomeasurethequalityofmoldingresults.Ahigherdepth-to-openingratiomeansbetterfillingstatusandmoldingquality.Thepresenceofvoidsplaysamajorroleinthemoldingprocess.Preheatingofthepolymerpriortothemoldingprocessreducesthechancesofentrapmentofvoids.Conventionalventingmethodsaredifficulttouseformicroinjectionmoldingduetothehighpossibilityofundesiredstructuralchangesinthemoldedcomponent.Hence,anevacuatedmoldisrecommendedtoobtainagoodreplicationprocess.Inthefirstmoldtrial,ordinaryinjectionmoldingparameterswereusedandnoadditionalcontrolunitwasactivated.Themoldingresultisshowninfigure6.Ascanbeseen,themoldingresultshaveasmalldepth-to-openingratiowhichmeanspolymermeltcannotfillthemicromold-cavity.Inthissituation,polymericmicrostructurescannotbesuccessfullyreplicated.Beforedoingmoremoldtrialstoimprovethemoldingresults,asimulationtoolwasusedtounderstandtheflowbehaviorofpolymermeltinthemicromold-cavityforfeasiblemodificationstoimprovethemoldingresults.5.SimulationItiswellknownthatcomputer-aidedengineering(CAE)canimprovethetrial-and-errortechniques,andcomputermodelscanbereliedupontopredictflowbehaviorandmoldresults.Ideally,CAEanalysisprovidesinsightthatisusefulindesigningparts,moldsandmoldingprocesses.ByusingCAEanalysistoiterateandevaluatealternativedesignsandmaterials,engineeringknow-howintheformofdesignguidelinescanbeestablishedrelativelyfastandcost-effectively.TheCAEsoftwareC-MOLDdevelopedbyACTechnologyisemployedasthenumericalcomputationtool.ThemoldfillingprocessismodeledbytheGHSmodeldescribedintheprevioussection.Thenumericalsolutionsarebasedonahybridfiniteelement/finitedifferencemethodtosolveforthepressure,flowandtemperaturefieldsandacontrolvolumemethodtotrackmovingmeltfronts.Afiniteelementmeshisusedtoapproximatethecircular-shapebaseplatewithconvexmicrostructuresononesurface,asshowninfigure7.Thisfiniteelementmode
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030全球及中國(guó)山藥行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 中國(guó)書(shū)本膠行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告(2024-2030)
- 《太陽(yáng)系的組成與運(yùn)行:初中地理空間科學(xué)教案》
- 《細(xì)胞的分裂與生長(zhǎng):初二生物基礎(chǔ)概念教案》
- 基于微流控芯片的微氣泡分裂機(jī)理研究
- 提升農(nóng)民對(duì)有機(jī)肥持續(xù)使用意愿的分析及演化博弈研究
- 木質(zhì)素基高強(qiáng)韌水凝膠的結(jié)構(gòu)設(shè)計(jì)及性能研究
- 中國(guó)移動(dòng)財(cái)務(wù)公司筆試真題2024
- 2024年云南體育運(yùn)動(dòng)職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試真題
- 2024年武漢華夏理工學(xué)院輔導(dǎo)員考試真題
- 屠戶吹狼閱讀答案
- GJB3206B-2022技術(shù)狀態(tài)管理
- SYT 6883-2021 輸氣管道工程過(guò)濾分離設(shè)備規(guī)范-PDF解密
- JTJ-248-2001港口工程灌注樁設(shè)計(jì)與施工規(guī)程-PDF解密
- 2024年4月自考00840第二外語(yǔ)(日語(yǔ))試題
- T-CACM 1184-2019 中醫(yī)內(nèi)科臨床診療指南 酒精性肝病
- 四川省成都市成華區(qū)2022-2023學(xué)年六年級(jí)下學(xué)期期末語(yǔ)文試卷
- 廣東省佛山市南海區(qū)桂城街道2022-2023學(xué)年五年級(jí)上學(xué)期期末英語(yǔ)試卷+
- DB32∕T-1553-2017-高速公路工程工程量清單計(jì)價(jià)規(guī)范
- 政府機(jī)關(guān)保安服務(wù)項(xiàng)目背景及需求分析
- 新媒體視頻節(jié)目制作 課件 學(xué)習(xí)領(lǐng)域2 微電影制作
評(píng)論
0/150
提交評(píng)論