MonteCarlo蒙特卡洛方法_第1頁
MonteCarlo蒙特卡洛方法_第2頁
MonteCarlo蒙特卡洛方法_第3頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、l:NIVLRSITY OF COPKN H GI!ND I; F A R T M E N T OF ECONOMICSEconometrics CMonte Carlo SimulationsPrinciple and Examplesl: N I V LR S I T V or COPI N M %GI!ND I; F A R T M £ N T OF ECONOMICSMonte Carlo Simulations MC simulations were introduced in Econometrics A.Formalizing the thought experimen

2、t underlying th© data sampling.Mimic the data generation and study the behaviour. In this course we will frequently use MC simulations. Standard tool in econometrics. Underlying the econometric results Is a layer of difficult statistical theory. Many asymptotic results are technically demanding

3、.Sometimes also drfftcult to firmly understand. Use MC simuiatlons to obtain intuition. The finite sample properties are otten analytically intractable. Analyze finrte sample propertiesUNIVERSITY OF COPi N HDI1FARTMENT OF tf C O N O M IC SThe Monte Carlo IdeaThe basic idea of the Monte Carlo method:

4、Replace a difficult deterministic problemwith a stochastic problem with the same solution.If we can solve the stochastic problem by simulations. laDour Intonsive work can be replaced by cheap capital Intensive simulations. How can we be sure that deterministk: and stochastic problems have same solut

5、ion?General answer is the law of large numbers (LLN). As an example, consider a stochastic variaWe x /(x).Calculation of the mean Is a (potentially difficult) deterministic problem:£(*) = Ixf(x)dxIf we can draw realizations x仁 &“xM from f(x). we can useE(x) = M"工* £ E(x) for M t x

6、.l:NIVtKSITY or COPKN H %GtlhC O N O M IC SD I; F A R T M E N T OFExample 1: Un biased ness Con引der a regressionYt = Xf3 f. t = 1.2T.where xt and “ have some specified properties: and the OLS estimator了 =(力衲寸(力Xr".We are often Interested In W( 7) to check for bias This Is difficult In most situ

7、ations、 But If we could draw realizatlons of 氏 then we could estimate E( J).MC simulation:0 Construct M artificial data sets from the model () Find the estimate. lor each data set. m 12 MThen from the LLN:MM八力益-E(7) tor MtxwExmp隱 2 A Central Limit Theorem (CLT)Recall the idea of a CLT (Undeberg-Lwy

8、L創(chuàng) z, . £? t)e IID with E(eJ 卜 and V(Zj “ and T r / z: be the empirtca< mean of zT ThenUNIVERSITY OF COPENHAGEN DEPARTMENT OF ECONOMICS Example 2: lllustrati on of CLT Con sider as an example zt Uni form (0, 1 , It holds that E (zt V (zt =1 2 (1 - 02 1 = . 12 12V T V 12, t = 1,2, ., T . We l

9、ook at the simulated distribution ofVT z -卩(T = z- 1 2 based on M = 10000 replicatio ns. Monte Carlo Simulatio nSlideUNIVERSITY OF COPENHAGEN T=1 0.4 DEPARTMENT OF ECONOMICST=2 0.30 De nsity 0.20 De nsity -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.10 0.00 0.0 0.1 0.2 0.3 -2 -1 0 1 2 T=5 0.4 0.4 T = 100 0.3 De

10、n sity Den sity -3 -2 -1 0 1 2 3 4 0.2 0.1 0.0 0.0 -4 0.1 0.2 0.3 -2 0 2 Mon te Carlo Simulatio nsSlide 7 UNIVERSITY OF COPENHAGEN DEPARTMENT OF ECONOMICS Example 3:Mon te Carlo to Check Con siste ncy Con sider the followi ng data gen erati ng processes: x1tN (0, 1 x2t N (0, 1 p = Corr (x1t , x2t b0 = 0 b1 = 1 b2 = 1 Case 1 2 3 4 5 DataGen erati ng Process yt = b0 + b1 x1t +£ t yt = b0 + b1 x1t + b2 x2t +£ t yt = b0 + b1b2 x2t +£ t yt = b1 yt -1 +£ t yt = b1 yt -1 +£ t p =N (0,p1 N6£ t £ t £ tB 1 be con sis(0, 1 N (0, 1 N (0, 1 = 0.5£

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論