




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、極值點偏移與拐點偏移的解題思路1.極值點偏移如果連續(xù)函數(shù)_門的圖像關(guān)于無線A =,紜對禰.川是/(A)的報值點(此時尸5。=01,對于/)=,的兩個根“X”顯燃.+過二m,即E的中點與極值點重合,我們稱為極值重合.如二次函數(shù)/(,) = x2 2x.如果連續(xù)函數(shù)力的圖像不是軸對稱圖形,m是/。)的極值點(此時/(陋)=0),對于/(#)=,的兩個根*1顯然2.拐點偏移(/(?。? 0)V -I- V的事,三1顯然r* =陰,即父八公的中點與拐點重合,卻我們稱為拐點重合.如三次函數(shù)f(x) = 1 - 31+ 3工如果連續(xù)函數(shù)八1的圖像關(guān)于占(人 O 不對稱,巳國是 /的拐點(.此時/(M =
2、o),對于滿足/(玉)+ /5) =2f(m)的M, a.,顯然弋上 * m,即,4的中點與拐點 不重合,我們稱為拐點偏移,如圖.3.對稱構(gòu)造函數(shù)法的解題思路利用極值偏移和拐點偏移編制的試題很多,其解答方法很多,但對稱構(gòu)造新函數(shù)法是最簡單、最給力的通法.具體構(gòu)造方法有以下兩種形式:(1)對結(jié)論為怎+ .號 2州或+再或/j的問題,如果/(?)= 0,2可以構(gòu)造 F(x) = f(x) - /(-), X 對結(jié)論為4+ x2 2m或+&或x吊的問題,如果 廣(z) =0,可以構(gòu)造1(x) = f(x) + f().x構(gòu)造新函數(shù)后,還需要確定變量的范圍和函數(shù)的單調(diào)性,具體方法如下:由于兩個變量分布
3、在極值點(或拐點)m的左右兩側(cè),可以利用極值點來確定變量的范圍(即,xim0)有兩個零點七一羯.證明:*+,00).X(-00,1)(L+8)/V)+則/(外在(ro,l)遞減.在(1,+Q0)遞增,1 = 1是極小值點.不妨沒.1 J要使/二/(七),由口訣“變號范圍極值分”,可知A1 1 x2.要證X +占V 2,即證8 2-/(2f.由口訣極值拐點話偏移,對稱構(gòu)造最給力”,可以對稱構(gòu)造以下新函數(shù):令 F(x) = Jx) - /(2-X), JC (L+8).由Ui央“導(dǎo)數(shù)再把單調(diào)論”,利用導(dǎo)數(shù)確定新函數(shù)F(x)在(1,+00)匕的單調(diào)性.b)= y.rv) = ( v - 1W , o
4、則戶O) 61 (1一8)上l弟曾.il l 1, WJ a(a2) 尸(1)=0 可知f g y2JV2).從而可得玉十工v2.例2:函數(shù)/ (才)=*加,y的圖像與直線v = m交于不同的兩總 A(X1,),衣(.叼,X),求證:-。三 v e證明:/(“)= In x+1.大(。)(eL+oo)廣(x)一+則.r(.c在gI遞減”作:+8)詡增一、=搓極小埴點.當(dāng) O V X V 1 時,/(.V) 1 時, /(x) ();結(jié)含圖像可知,.roc =的兩個文根項,小 都在(o,D內(nèi).不妨設(shè)N VN,山口訣“變量范圍極值分“,可知0 v m e 1 x2 i.要 i正 xtx2 e 2
5、. H|J 證匕 J e7 x2 史只需沛明/(.%)=/ (). e x2由ni夬“極值拐點灑偏移,對稱構(gòu)造最給力”,可以襯稱構(gòu)造新函數(shù);令尸(.丫)= /()/(2 ) r .V ( I二的單-詞性.L(a) = /O) + !-r J X-4-)=(1 + lnx)l-(ejr)-20. (ex)- ex則/,(v)在(e 1 J) I .遞增.山 “2 A ,貝|J 戶) 戶(e -)=O p 口矢口 y (x.) / (!)” - /%從而可得占三ve-2.3- /Cr) = 21n.r + r2 + v . iF和匚滿足+ f(x ) = 4-求證:JT| + &之2 .證明:/(
6、,)=2 + 2%+1 . m _ 2與,則% 1是拐點. .Vx易知f (外在(0,+ooJ遞增,且/(I) = 2,要使曷H/=4,則。Ml V 占.要證為 +xy2. Li|Ji|:x. 2-x 1,只需征明 4 一 f ($) = f(x.) f2 一 x) .印證/(者)+ /(2-$)工4T由口訣極值拐點話偏移,對稱構(gòu)造最給力乙可以對稱構(gòu)造新的數(shù);令F(x) -,(x)十八2之(0,1.由口訣“導(dǎo)數(shù)再把單調(diào)論”,利用導(dǎo)數(shù)確定新函數(shù)廠(口在8,1上的單調(diào)性.小飛 = jd42-n =()之u 式 2 -x)則FC0在1)上遞增.由0 2.分析:/卜)二9一,/由結(jié)論Xi + X22可
7、以看出,1不是f(x)的極值點和拐點。由口訣 “結(jié)論無關(guān)兩類點,衍生函數(shù)命題變”,此題可以嘗試對原函數(shù)進行衍生變換,生成一個以1為極值點的新函數(shù)進行證明,值得一提的是:這個新函數(shù)一定要與f(x)密切相關(guān),否則,無法利用題設(shè)條件 rtl / ( r) = e - ax = 0 n =.我們由 / ( r)衍生田一個新函數(shù)巾)=?-a ,則彳=斤4X(0,1)(L+8)C)一4顯然,1是n(幻的極小值點.又E,三是的零點,則g(X1 ) = g(“2)=。,H.0 ! 1 x2.由11訣”極值拐點話偏移,對稱構(gòu)造城給力”,我們對稱構(gòu)造新出數(shù):令(*) = M(x) - #(2 X) 0 X 1 )
8、(ex 4則 “(X)= () + E(2-X)= y(K1)廠(2-工)-J易知V =/在(0.1)上速成 則hx) 0,所以A(.v)在 (0,1)1.箜減.義0.。/ii)=0.叮得 g(X) g(2 - X入于是 g (x2 ) g(2 x, ) X 2-Xj 1,與 1,由 g(x)在(1,+8)遞苞則七 2-,十足百十 x2 2.例 5:己矢口 /(.r) = xln x-mx2,T, 7G R .若,小)有兩個極值點XI,士 , 11 Aj /可以看出,c不是g(x)向極伯點和拐點.由口訣結(jié)論無關(guān)兩類點,衍生函數(shù)命題變”,此題可以嘗試;對原函數(shù)進行衍生變換,生成 個以e為極值點的
9、新函數(shù)進行iiF,叨,伯得一提的是:這個新函數(shù)一定耍與g )游I/J #!美.否則,無法利用施設(shè)條件.證明1:(衍生函數(shù)法)I / 、.八In x111 8(x) = in x mx = () = m =x令例K)=電三一切,(回=上*.X人“A(og(匕+8)”(人).顯燃.e是,7(x)的極大值點. ill g(X)=是f)=(),可知萬(.1) = /(x2) = ()t 110 X1 e ( a o*- XO幻-所以*)在(0,c)上遞增.又。VC,則()() = 0.可得/5)v伙巨),于是以人) e 9 Hl /(.v)在(f,+R) j左減,則-. J是芭 r2 e為證明2:轉(zhuǎn)化
10、命題結(jié)論法因為N,.”是/(.V)的兩個極值點,則為、.3是內(nèi)=/)=In x-,x佬兩個等點.又x(v)=:二”,顯然?0, X療則,小數(shù)g(力( ).十OO)卜遞增,最也只仃I 1、等點.X e2,只需證X + a2 = (Inx, + Inx2)ln( X v;)問題?;癁椋阂阎?rrv2是:g (a) = In x - /hx的兩個零點,1210 JC, .(此時一是 g(X) rnn?m的極大值點,滿足板值偏移的條件)由口訣極值拐點話偏移,時稱構(gòu)造最給力”,我們對稱構(gòu)造新函數(shù),/l(.V)=-X)( 0 X mm,(ff 22mx-y則人(x) - g (x) + g (x)= 0.yn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CECS 10022-2019埋地用改性高密度聚乙烯(HDPE-M)雙壁波紋管材
- T/CCT 011-2020干法選煤技術(shù)規(guī)范
- T/CCOA 71-2023濃香葵花籽油
- T/CCOA 20-2020火鍋用油
- T/CCMS 003-2024真空抽吸車試驗方法
- T/CBJ 2208-2024白酒智能釀造過程質(zhì)量監(jiān)控通用要求
- T/CATEA 006-2023甘蔗脫毒健康種苗生產(chǎn)栽培技術(shù)規(guī)程
- T/CATCM 018-2023黑蚱野生撫育和蟬蛻采收技術(shù)規(guī)程
- T/CAPE 12001-2020起重機用升降機
- 機構(gòu)公眾號面試題及答案
- 涉密人員涉密資格審查表
- GB/T 2346-2003流體傳動系統(tǒng)及元件公稱壓力系列
- GB 5009.74-2014食品安全國家標(biāo)準(zhǔn)食品添加劑中重金屬限量試驗
- FZ/T 10007-2018棉及化纖純紡、混紡本色紗線檢驗規(guī)則
- 《薪酬管理的國內(nèi)外文獻綜述》1100字
- 設(shè)備調(diào)撥單表格
- 工廠電氣安全培訓(xùn)課件
- DB63T1743-2019青海省建筑工程資料管理規(guī)程
- 文稿成果pcb承認書
- (精華完整版)國家開放大學(xué)電大本科《農(nóng)業(yè)生態(tài)學(xué)》網(wǎng)絡(luò)課形考網(wǎng)考作業(yè)及答案
- 運動控制系統(tǒng)思考題參考答案阮毅
評論
0/150
提交評論