




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第五講 恒等式的證明代數(shù)式的恒等變形是初中代數(shù)的重要內(nèi)容,它涉及的基礎(chǔ)知識較多,主要有整式、分式與根式的基本概念及運(yùn)算法則,因式分解的知識與技能技巧等等,因此代數(shù)式的恒等變形是學(xué)好初中代數(shù)必備的基本功之一本講主要介紹恒等式的證明首先復(fù)習(xí)一下基本知識,然后進(jìn)行例題分析兩個(gè)代數(shù)式,如果對于字母在允許范圍內(nèi)的一切取值,它們的值都相等,則稱這兩個(gè)代數(shù)式恒等把一個(gè)代數(shù)式變換成另一個(gè)與它恒等的代數(shù)式叫作代數(shù)式的恒等變形恒等式的證明,就是通過恒等變形證明等號兩邊的代數(shù)式相等證明恒等式,沒有統(tǒng)一的方法,需要根據(jù)具體問題,采用不同的變形技巧,使證明過程盡量簡捷一般可以把恒等式的證明分為兩類:一類是無附加條件的恒
2、等式證明;另一類是有附加條件的恒等式的證明對于后者,同學(xué)們要善于利用附加條件,使證明簡化下面結(jié)合例題介紹恒等式證明中的一些常用方法與技巧1由繁到簡和相向趨進(jìn)恒等式證明最基本的思路是“由繁到簡”(即由等式較繁的一邊向另一邊推導(dǎo))和“相向趨進(jìn)”(即將等式兩邊同時(shí)轉(zhuǎn)化為同一形式)例1 已知x+y+z=xyz,證明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz分析 將左邊展開,利用條件x+y+z=xyz,將等式左邊化簡成右邊證 因?yàn)閤+y+z=xyz,所以左邊=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)
3、=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右邊說明 本例的證明思路就是“由繁到簡”例2 已知1989x2=1991y2=1993z2,x0,y0,z0,且證 令1989x2=1991y2=1993z2=k(k0),則又因?yàn)樗运哉f明 本例的證明思路是“相向趨進(jìn)”,在證明方法上,通過設(shè)參數(shù)k,使左右兩邊同時(shí)變形為同一
4、形式,從而使等式成立2比較法a=b(比商法)這也是證明恒等式的重要思路之一 例3 求證: 分析 用比差法證明左-右=0本例中,這個(gè)式子具有如下特征:如果取出它的第一項(xiàng),把其中的字母輪換,即以b代a,c代b,a代c,則可得出第二項(xiàng);若對第二項(xiàng)的字母實(shí)行上述輪換,則可得出第三項(xiàng);對第三項(xiàng)的字母實(shí)行上述輪換,可得出第一項(xiàng)具有這種特性的式子叫作輪換式利用這種特性,可使輪換式的運(yùn)算簡化證 因?yàn)樗运哉f明 本例若采用通分化簡的方法將很繁像這種把一個(gè)分式分解成幾個(gè)部分分式和的形式,是分式恒等變形中的常用技巧全不為零證明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r)同理所以 所以(1+p)
5、(1+q)(1+r)=(1-p)(1-q)(1-r)說明 本例采用的是比商法3分析法與綜合法根據(jù)推理過程的方向不同,恒等式的證明方法又可分為分析法與綜合法分析法是從要求證的結(jié)論出發(fā),尋求在什么情況下結(jié)論是正確的,這樣一步一步逆向推導(dǎo),尋求結(jié)論成立的條件,一旦條件成立就可斷言結(jié)論正確,即所謂“執(zhí)果索因”而綜合法正好相反,它是“由因?qū)Ч?,即從已知條件出發(fā)順向推理,得到所求結(jié)論證 要證 a2+b2+c2=(a+b-c)2,只要證a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要證 ab=ac+bc,只要證 c(a+b)=ab,只要證這最后的等式正好是題設(shè),而以上推理每一步都可逆,故所
6、求證的等式成立說明 本題采用的方法是典型的分析法例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正數(shù),求證:a=b=c=d證 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0因?yàn)?a2-b2)20,(c2-d2)20,(ab-cd)20,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)0又因?yàn)閍,b,c,d都為正數(shù),所以a+b0,c+d0,所以ab,c=d所以ab-cd=a2-c2=(a+c)(
7、a-c)=0,所以ac故a=bc=d成立說明 本題采用的方法是綜合法4其他證明方法與技巧求證:8a+9b+5c=0a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a)所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a)以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0說明 本題證明中用到了“遇連比設(shè)為k”的設(shè)參數(shù)法,前面的例2用的也是類似方法這種設(shè)參數(shù)法也是恒等式證明中的常用技巧例8 已知a+b+c=0,求證2(a4+b4+c4)(a2+b2+c2)2分析與證明 用比差法
8、,注意利用a+b+c=0的條件左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=a2-(b-c)2a2-(b+c)2=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0所以等式成立說明 本題證明過程中主要是進(jìn)行因式分解分析 本題的兩個(gè)已知條件中,包含字母a,x,y和z,而在求證的結(jié)論中,卻只包含a,x和z,因此可以從消去y著手,得到如下證法證 由已知說明 本題利用的是“消元”法,它是證明條件等式的常用方法例10 證明:(y+z-2x
9、)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z)分析與證明 此題看起來很復(fù)雜,但仔細(xì)觀察,可以使用換元法令y+z-2x=a,z+x-2y=b,x+y-2z=c,則要證的等式變?yōu)閍3+b3+c3=3abc聯(lián)想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以將,相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z)說明 由本例可以看出,換元法也可以在恒等式證明中發(fā)揮效力例11 設(shè)x,y,z為互不相等的非零實(shí)數(shù),且求證:x2y2z2=1分析 本題x,y,z具有輪換對稱的特點(diǎn),我們不妨先看二元的所以x2y2=1三元與二元的結(jié)構(gòu)類似證 由已知有××得x2y2z2=1說明 這種欲進(jìn)先退的解題策略經(jīng)常用于探索解決問題的思路中總之,從上面的例題中可以看出,恒等式證明的關(guān)鍵是代數(shù)式的變形技能同學(xué)們要在明確變形目的的基礎(chǔ)上,深刻體會(huì)例題中的常用變形技能與方法,這對以后的數(shù)學(xué)學(xué)習(xí)非常重要練習(xí)五1已知(c-a)2-4(a-b)(b-c)=0,求證:2b=a+c2證明:(x+y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45710-2025聚對苯二甲酸乙二醇酯纖維及切片中低聚物的測定高效聚合物色譜法(APC)
- 2025年食品科學(xué)與工程專業(yè)綜合知識考核試題及答案
- Aromatase-IN-5-生命科學(xué)試劑-MCE
- 2025年人力資源管理政策與實(shí)務(wù)試題及答案
- 2025年監(jiān)會(huì)與財(cái)經(jīng)法規(guī)專業(yè)資格考試試題及答案
- 2025年家庭教育與兒童心理發(fā)展專業(yè)知識考試試卷及答案
- 2025年海洋科學(xué)專業(yè)研究生入學(xué)考試題及答案
- 2025年公共衛(wèi)生管理碩士考試試題及答案
- 愛的禮物我家的寵物狗寫物作文(7篇)
- 一年級寫人作文我的妹妹300字(12篇)
- 互聯(lián)網(wǎng)與營銷創(chuàng)新智慧樹知到期末考試答案章節(jié)答案2024年華東師范大學(xué)
- 云南開放大學(xué)實(shí)-用寫作離線作業(yè)1-5
- 四川省成都市溫江縣2023-2024學(xué)年八下物理期末監(jiān)測試題及答案解析
- 內(nèi)科學(xué)(腎臟-內(nèi)分泌-血液)智慧樹知到期末考試答案章節(jié)答案2024年溫州醫(yī)科大學(xué)
- 食品安全與日常飲食智慧樹知到期末考試答案章節(jié)答案2024年中國農(nóng)業(yè)大學(xué)
- 100以內(nèi)進(jìn)退位加減法口算題每天60道
- MOOC 嵌入式軟件設(shè)計(jì)-大連理工大學(xué) 中國大學(xué)慕課答案
- 永久基本農(nóng)田儲(chǔ)備區(qū)劃定技術(shù)方案
- 醫(yī)療銷售經(jīng)驗(yàn)技巧分享
- 大氣組成與垂直分層(簡潔版)
- 鋼鐵企業(yè)環(huán)保培訓(xùn)課件
評論
0/150
提交評論