高中數學 2-2-2 對數函數及其性質能力強化提升 新A版必修1_第1頁
高中數學 2-2-2 對數函數及其性質能力強化提升 新A版必修1_第2頁
高中數學 2-2-2 對數函數及其性質能力強化提升 新A版必修1_第3頁
高中數學 2-2-2 對數函數及其性質能力強化提升 新A版必修1_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.高中數學 2-2-2-1 對數函數及其性質才能強化提升 新人教A版必修1一、選擇題1以下函數是對數函數的是Aylog3x1Byloga2xa>0,且a1Cylogax2a>0,且a1Dylnx答案D2函數ylogax的圖象如下圖,那么實數a的可能取值是A5B.C.D.答案A3函數fxlogax0<a1對于任意正實數x、y都有AfxyfxfyBfxyfxfyCfxyfxfyDfxyfxfy答案B420192019重慶市風鳴山中學期中試題函數fx定義域為A0,2 B0,2C0,11,2 D,2答案C解析使fx有意義滿足0x2且x1,應選C.52019·全國高考數學文科

2、試題安徽卷設集合Ax|32x13,集合B是函數ylgx1的定義域,那么ABA1,2 B1,2C1,2 D1,2答案D解析Ax|32x131,2,B1,AB1,26函數ylogx,x0,8的值域是A3, B3,C,3 D,3答案A解析0<x8,logx3,應選A.720192019山東汶上中學高一期中考試函數fx那么ffA. B4C4 D答案A解析flog32,f222,ff,應選A.8loga<1,那么a的取值范圍是A0<a<或a>1 Ba<0或<a<1Ca> Da<答案A解析loga<1,即loga<logaa.當a&g

3、t;1時,<a,a>1.當0<a<1時,>a,0<a<.a的取值范圍是0<a<或a>1.二、填空題9對數函數fx的圖象過P8,3,那么f_.答案110求以下各式中a的取值范圍:1loga3<loga,那么a_;2log5<log5a,那么a_.答案11,2,11函數fxloga3x22a>0,a1恒過定點_答案1,21220192019瓊海高一檢測設函數fxlogaxa>0且a1,假設fx1x2x2 0128,那么fxfxfx的值等于_答案16三、解答題13比較以下各組中兩個值的大小 :1ln0.3,ln2;2

4、loga3.1,loga5.2a>0,且a1;3log30.2,log40.2;4log3,log3.思路分析1構造對數函數ylnx,利用函數的單調性判斷;2需對底數a分類討化;3由于兩個對數的底數不同,故不能直接比較大小,可對這兩個對數分別取倒數,再根據同底對數函數的單調性比較大小;4構造對數函數,并借助中間量判斷解析1因為函數ylnx是增函數,且0.3<2,所以ln0.3<ln2.2當a>1時,函數ylogax在0,上是增函數,又3.1<5.2,所以loga3.1<loga5.2;當0<a<1時,函數ylogax在0,上是減函數,又3.1&l

5、t;5.2,所以loga3.1>loga5.2.3因為0>log0.23>log0.24,所以<,即log30.2<log40.2.4因為函數ylog3x是增函數,且>3,所以log3>log331,同理,1log>log3,即log3>log3.14求以下函數定義域:1fxlgx2;2fxlogx1164x分析1真數要大于0,分式的分母不能為0,2底數要大于0且不等于1,真數要大于0.解析1由得x2且x3,定義域為2,33,2由即解得1x0或0x4.定義域為1,00,415fxlg.x1,1假設fa求fa解析方法1:fxlglg1,fafa.方法2:falg,falglg1lg161假設loga<1,求a的取值范圍;2求滿足不等式log3x<1的x的取值集合分析將常數1轉化為對數式的形式,構造對數函數,利用對數函數的單調性求解解析1loga<1,即loga<logaa,當a>1時,函數ylogax在定義域內是增函數,所以loga<logaa總成立;當0<a<1時,函數ylogax在定義域內是減函數,由loga<logaa,得a<,即0<a<.故0<a<或a>1.2因為log3x<1log33,所以x滿足的條件為,即0<x&

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論