勾股定理的逆定理及全章復習_第1頁
勾股定理的逆定理及全章復習_第2頁
勾股定理的逆定理及全章復習_第3頁
勾股定理的逆定理及全章復習_第4頁
勾股定理的逆定理及全章復習_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上18.2 勾股定理的逆定理(一)教學目標1體會勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的證明方法。3理解原命題、逆命題、逆定理的概念及關(guān)系。重點:掌握勾股定理的逆定理及簡單應用。難點:勾股定理的逆定理的證明。教學過程:一.預習新知(閱讀教材P73 75 , 完成課前預習)1.三邊長度分別為3 cm、4 cm、5 cm的三角形與以3 cm、4 cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?2.你能證明以6cm、8cm、10cm為三邊長的三角形是直角三角形嗎? 圖18.2-23.如圖18.2-2,若ABC的三邊長、滿足,試證明ABC

2、是直角三角形,請簡要地寫出證明過程4.此定理與勾股定理之間有怎樣的關(guān)系?(1)什么叫互為逆命題(2)什么叫互為逆定理(3)任何一個命題都有 _,但任何一個定理未必都有 _5.說出下列命題的逆命題。這些命題的逆命題成立嗎?(1) 兩直線平行,內(nèi)錯角相等;(2) 如果兩個實數(shù)相等,那么它們的絕對值相等;(3) 全等三角形的對應角相等;(4) 角的內(nèi)部到角的兩邊距離相等的點在角的平分線上。二課堂展示例1:判斷由線段、組成的三角形是不是直角三角形:(1); (2)(3); (4);三.隨堂練習1.完成書上P75練習1、22.如果三條線段長a,b,c滿足,這三條線段組成的三角形是不是直角三角形?為什么?

3、3.A,B,C三地的兩兩距離如圖所示,A地在B地的正東方向,C地在B地的什么方向?4.思考:我們知道3、4、5是一組勾股數(shù),那么3k、4k、5k(k是正整數(shù))也是一組勾股數(shù)嗎?一般地,如果a、b、c是一組勾股數(shù),那么ak、bk、ck(k是正整數(shù))也是一組勾股數(shù)嗎?四.課堂檢測1.若ABC的三邊a,b,c滿足條件a2+b2+c2+338=10a+24b+26c,試判定ABC的形狀2.一根24米繩子,折成三邊為三個連續(xù)偶數(shù)的三角形,則三邊長分別為多少米?此三角形的形狀為?3.已知:如圖,在ABC中,CD是AB邊上的高,且CD2=AD·BD。求證:ABC是直角三角形。五.小結(jié)與反思18.2

4、勾股定理逆定理(2)教學目標:1.進一步掌握勾股定理的逆定理,并會應用勾股定理的逆定理判斷一個三角形是否是直角三角形,能夠理解勾股定理及其逆定理的區(qū)別與聯(lián)系,掌握它們的應用范圍。2.培養(yǎng)邏輯推理能力,體會“形”與“數(shù)”的結(jié)合。3.在不同條件、不同環(huán)境中反復運用定理,達到熟練使用,靈活運用的程度。4.培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。重點:勾股定理的逆定理難點:勾股定理的逆定理的應用教學過程:一.預習新知已知:如圖,四邊形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四邊形ABCD的面積。歸納:求不規(guī)則圖形的面積時,要把不規(guī)則圖形 二.課堂展示圖18

5、.2-3例1.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里,它們離開港口一個半小時后相距30海里如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?例2如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算一下土地的面積,以便計算一下產(chǎn)量。小明找了一卷米尺,測得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90°。你能幫小明算出土地的面積嗎?三.隨堂練習1.完成書上P76練習32.一個三角形三邊之比為3:4:5,則這個三角形三邊上的高值比為 A 3:4:5 B

6、5:4:3 C 20:15:12 D 10:8:23.如果ABC的三邊a,b,c滿足關(guān)系式 +(b-18)2+=0則ABC是 _三角形。四.課堂檢測1.若ABC的三邊a、b、c,滿足(ab)(a2b2c2)=0,則ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2.若ABC的三邊a、b、c,滿足a:b:c=1:1:,試判斷ABC的形狀。3.已知:如圖,四邊形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。求:四邊形ABCD的面積。4.小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是

7、。5.一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。6.已知ABC的三邊為a、b、c,且a+b=4,ab=1,c=,試判定ABC的形狀。 7.如圖,在正方形中,為的中點,為上一點且,求證:90。.五.小結(jié)與反思勾股定理復習(一)教學目標1.理解勾股定理的內(nèi)容,已知直角三角形的兩邊,會運用勾股定理求第三邊.2.勾股定理的應用.3.會運用勾股定理的逆定理,判斷直角三角形.重點:掌握勾股定理及其逆定理.難點:理解勾股定理及其逆定理的應用.教學過程一.復習回顧在本章中,我們探索了直角三角形的三邊關(guān)系,并在此基礎(chǔ)上得到了勾股定理,

8、并學習了如何利用拼圖驗證勾股定理,介紹了勾股定理的用途;本章后半部分學習了勾股定理的逆定理以及它的應用其知識結(jié)構(gòu)如下:1.勾股定理:(1)直角三角形兩直角邊的_和等于_的平方就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:.這就是勾股定理(2)勾股定理揭示了直角三角形_之間的數(shù)量關(guān)系,是解決有關(guān)線段計算問題的重要依據(jù),2.勾股定理逆定理“若三角形的兩條邊的平方和等于第三邊的平方,則這個三角形為_.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據(jù)邊的關(guān)系解決角的有關(guān)問題提供了新的方法.定理的證明采用了構(gòu)造法.利用已知三角形的邊a,b,c(a

9、2+b2=c2),先構(gòu)造一個直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進而通過“SSS”證明兩個三角形全等,證明定理成立.3.勾股定理的作用:(1)已知直角三角形的兩邊,求第三邊;(2)在數(shù)軸上作出表示(n為正整數(shù))的點勾股定理的逆定理是用來判定一個三角形是否是直角三角形的.勾股定理的逆定理也可用來證明兩直線是否垂直,勾股定理是直角三角形的性質(zhì)定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個角是直角,從而產(chǎn)生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計算來證明,體現(xiàn)了數(shù)形結(jié)合的思想(3)三角形的三邊分別為a、b、c

10、,其中c為最大邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形所以使用勾股定理的逆定理時首先要確定三角形的最大邊二.課堂展示例1:如果一個直角三角形的兩條邊長分別是6cm和8cm,那么這個三角形的周長和面積分別是多少?例2:如圖,在四邊形ABCD中,C=90°,AB=13,BC=4,CD=3,AD=12,求證:ADBD 三.隨堂練習1.如果下列各組數(shù)是三角形的三邊,那么不能組成直角三角形的一組數(shù)是( )A7,24,25 B3,4,5 C3,4,5 D4,7,82.如果把直角三角形的兩條直角邊同時擴大到原來的2倍,那么斜邊擴大到原來的( )圖1A1006

11、4A1倍 B2倍 C3倍 D4倍3.三個正方形的面積如圖1,正方形A的面積為( ) A 6 B 36 C 64 D 84.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為()A6cm B85cm Ccm Dcm5.在ABC中,三條邊的長分別為a,b,c,an21,b2n,cn2+1(n1,且n為整數(shù)),這個三角形是直角三角形嗎?若是,哪個角是直角四.小結(jié)五.課后練習1兩只小鼴鼠在地下打洞,一只朝前方挖,每分鐘挖8cm,另一只朝左挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距( )A50cm B100cm C140cm D80cm2小明想知道學校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還

12、多1m,當它把繩子的下端拉開5m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為 ( )A8cm B10cm C12cm D14cm3在ABC中,C90°,若 a5,b12,則 c4等腰ABC的面積為12cm2,底上的高AD3cm,則它的周長為 5等邊ABC的高為3cm,以AB為邊的正方形面積為6一個三角形的三邊的比為51213,它的周長為60cm,則它的面積是7有一個小朋友拿著一根竹竿要通過一個長方形的門,如果把竹竿豎放就比門高出1尺,斜放就恰好等于門的對角線長,已知門寬4尺求竹竿高與門高勾股定理復習(二)教學目標1.掌握直角三角形的邊、角之間所存在的關(guān)系,熟練應用直角三角形的勾股定理和逆定

13、理來解決實際問題2.經(jīng)歷反思本單元知識結(jié)構(gòu)的過程,理解和領(lǐng)會勾股定理和逆定理3.熟悉勾股定理的歷史,進一步了解我國古代數(shù)學的偉大成就,激發(fā)愛國主義思想,培養(yǎng)良好的學習態(tài)度重點:掌握勾股定理以及逆定理的應用難點:應用勾股定理以及逆定理教學過程一、 引入二、知識點解析知識點一、已知兩邊求第三邊1在直角三角形中,若兩直角邊的長分別為1cm,2cm ,則斜邊長為_2已知直角三角形的兩邊長為3、2,則另一條邊長是_3在數(shù)軸上作出表示的點4已知,如圖在ABC中,AB=BC=CA=2cm,AD是邊BC上的高求 AD的長;ABC的面積ADEBC知識點二、利用列方程求線段的長1如圖,鐵路上A,B兩點相距25km

14、,C,D為兩村莊,DAAB于A,CBAB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少km處?2.如圖,某學校(A點)與公路(直線L)的距離為300米,又與公路車站(D點)的距離為500米,現(xiàn)要在公路上建一個小商店(C點),使之與該校A及車站D的距離相等,求商店與車站之間的距離知識點三、判別一個三角形是否是直角三角形1.分別以下列四組數(shù)為一個三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有 2.若三角形的三別是a2+b2,2ab,a2-b2

15、(a>b>0),則這個三角形是 .3.如圖1,在ABC中,AD是高,且,求證:ABC為直角三角形。知識點四、靈活變通1.在RtABC中, a,b,c分別是三條邊,B=90°,已知a=6,b=10,則邊長c= 682.直角三角形中,以直角邊為邊長的兩個正方形的面積為7,8,則以斜邊為邊長的正方形的面積為_3.如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外 壁爬行,要從A點爬到B點,則最少要爬行 cm4.如圖:帶陰影部分的半圓的面積是 (取3)5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是 6.若一個三角形的周長12cm

16、,一邊長為3cm,其他兩邊之差為cm,則這個三角形是_知識點五、能力提升1.已知:如圖,ABC中,ABAC,AD是BC邊上的高求證:AB2-AC2=BC(BD-DC)2.如圖,四邊形ABCD中,F(xiàn)為DC的中點,E為BC上一點,且你能說明AFE是直角嗎?三.小結(jié)四.課后練習1已知ABC中,A= B= C,則它的三條邊之比為(  )    A1:1:1     B1:1 :2    C1:2 :3     D1:4:12下列各組線段中,能夠組成直角三角形的是(  )    A6,7,8    B5,6,7    C4,5,6    D3,4,53.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為()A6cm B85cm C3013cm D6013 cm4.有兩棵樹,一棵高6米,另一棵高3米,兩樹相距4米一只小鳥從一棵樹的樹梢飛到另一棵樹的樹梢,至少飛了米5.一座橋橫跨一江,橋長12m,一般小船自橋北頭

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論