12 子集、全集、補(bǔ)集(2)_第1頁(yè)
12 子集、全集、補(bǔ)集(2)_第2頁(yè)
12 子集、全集、補(bǔ)集(2)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、課題1.2子集、全集、補(bǔ)集(2)課型新授學(xué)習(xí)目標(biāo):1使學(xué)生進(jìn)一步理解集合及子集的意義,了解全集、補(bǔ)集的概念;2能在給定的全集及其一個(gè)子集的基礎(chǔ)上,求該子集的補(bǔ)集;3培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)將日常問(wèn)題數(shù)學(xué)化,培養(yǎng)學(xué)生觀察、分析、歸納等能力學(xué)習(xí)重點(diǎn):補(bǔ)集的含義及求法學(xué)習(xí)難點(diǎn):補(bǔ)集性質(zhì)的理解學(xué)習(xí)過(guò)程學(xué)習(xí)札記一、問(wèn)題情境1 情境(1)復(fù)習(xí)子集的概念;(2)說(shuō)出集合1,2,3的所有子集2問(wèn)題相對(duì)于集合1,2,3而言,集合1與集合2,3有何關(guān)系呢?二、學(xué)生活動(dòng)1分析、歸納出全集與補(bǔ)集的概念;2列舉生活中全集與補(bǔ)集的實(shí)例三、數(shù)學(xué)建構(gòu)1補(bǔ)集的概念:設(shè)AS,由S中不屬于A的所有元素組成的集合稱(chēng)為S的子集A的補(bǔ)集,記

2、為A(讀作“A在S中的補(bǔ)集”),即A xx S,且xA ,A可用右圖表示2全集的含義:如果集合S包含我們研究的各個(gè)集合,這時(shí)S可以看作一個(gè)全集,全集通常記作U3常用數(shù)集的記法:自然數(shù)集N,正整數(shù)集N*,整數(shù)集Z,有理數(shù)集Q,實(shí)數(shù)集R則無(wú)理數(shù)集可表示為QSA四、數(shù)學(xué)運(yùn)用1例題例1已知全集SZ,集合Ax|x2k,kÎZ,B x|x2k1,kÎZ,分別寫(xiě)出集合A,B的補(bǔ)集SA和SB 例2不等式組的解集為A,SR,試求A及A,并把它們表示在數(shù)軸上例3已知全集S1,2,3,4,5,A xSx25qx40(1)若AS,求q的取值范圍;(2)若A中有四個(gè)元素,求A和q的值;(3)若A中僅有兩個(gè)元素,求A和q的值2練習(xí):(1)A在S中的補(bǔ)集等于什么?即(A)(2)若SZ,A xx2k,kZ,B xx2k1,kZ,則A,B(3),S五、回顧小結(jié)1全集與補(bǔ)集的概念;2任一集合對(duì)于全集

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論