




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、9.3二項式定理 -2-知識梳理雙基自測1.二項式定理 r+1 -3-知識梳理雙基自測2.二項式系數(shù)的性質(zhì) -4-知識梳理雙基自測3.常用結(jié)論 2n 2n-1 2-5-知識梳理雙基自測3415-6-知識梳理雙基自測23415A-7-知識梳理雙基自測234153.已知(1+x)n的展開式中第4項與第8項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為()A.212B.211C.210D.29D解析 由條件知 ,則n=10.故(1+x)10中二項式系數(shù)和為210,其中奇數(shù)項的二項式系數(shù)和為210-1=29.-8-知識梳理雙基自測234154.在(1-2x)6的展開式中,x2的系數(shù)為.(用數(shù)字作答)60-
2、9-知識梳理雙基自測234155.已知(1+3x)n的展開式中含有x2項的系數(shù)是54,則n=.4-10-考點1考點2考向一已知二項式求其特定項(或系數(shù))思考如何求二項展開式的項或特定項的系數(shù)?已知特定項的系數(shù)如何求二項式中的參數(shù)?A-56 -11-考點1考點2考向二已知三項式求其特定項(或系數(shù))例2(1)在(x2+x+y)5的展開式中,x5y2的系數(shù)為 ()A.10 B.20C.30D.60(2)在(x2-x+1)3展開式中,x項的系數(shù)為()A.-3B.-1C.1D.3思考如何求三項式中某一特定項的系數(shù)?CA-12-考點1考點2-13-考點1考點2考向三求兩個因式之積的特定項系數(shù)例3(1) (
3、1+x)6展開式中x2的系數(shù)為()A.15 B.20C.30 D.35(2)(x-y)(x+y)8的展開式中x2y7的系數(shù)為.(用數(shù)字填寫答案)思考如何求兩個因式之積的特定項系數(shù)?C-20-14-考點1考點2-15-考點1考點2-16-考點1考點2解題心得1.求二項展開式中的項或項的系數(shù)的方法:求二項展先建立方程求k,再將k的值代回通項求解,注意k的取值范圍(k=0,1,2,n).特定項的系數(shù)問題及相關參數(shù)值的求解等都可依據(jù)上述方法求解.2.求三項展開式中某些特殊項的系數(shù)的方法:(1)通過變形先把三項式轉(zhuǎn)化為二項式,再用二項式定理去解;(2)兩次利用二項式定理的通項公式求解;(3)由二項式定理
4、的推證方法知,可用排列組合的基本原理去求,即把三項式看作幾個因式之積,要得到特定項看有多少種方法從這幾個因式中取因式中的量.3.求兩個因式之積的特定項系數(shù)也有兩種方法:(1)利用通項公式法;(2)用排列組合法.-17-考點1考點22 141 128-18-考點1考點2則取常數(shù)項時r=2m.由題可知r0,1,2,3,4,5,6,m0,1,2,3,4,5,6,則m的可能取值為0,1,2,3,對應的r分別為0,2,4,6.當m=0,r=0時,常數(shù)項為1;當m=1,r=2時,常數(shù)項為30;當m=2,r=4時,常數(shù)項為90;當m=3,r=6時,常數(shù)項為20;故常數(shù)項為1+30+90+20=141.-19
5、-考點1考點2-20-考點1考點2B-21-考點1考點2 -8 064 -15 360 x4 -22-考點1考點2-23-考點1考點2考向三求二項式展開式中系數(shù)的和例6(a+x)(1+x)4的展開式中x的奇數(shù)次冪項的系數(shù)之和為32,則a=.思考求二項式系數(shù)和的常用方法是什么?3=x4+4x3+6x2+4x+1,(a+x)(1+x)4的奇數(shù)次冪項的系數(shù)為4a+4a+1+6+1=32.a=3.(方法二)設(a+x)(1+x)4=b0+b1x+b2x2+b3x3+b4x4+b5x5.令x=1,得16(a+1)=b0+b1+b2+b3+b4+b5,令x=-1,得0=b0-b1+b2-b3+b4-b5,由-,得16(a+1)=2(b1+b3+b5).即8(a+1)=32,解得a=3.-24-考點1考點2-25-考點1考點23.求二項式系數(shù)和的常用方法是賦值法:(1)“賦值法”普遍適用于恒等式,對形如(ax+b)n,(ax2+bx+c)m(a,bR)的式子,求其展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小型企業(yè)辦公室管理辦法
- 淮南市交通工程管理辦法
- 重慶戶外攀巖管理辦法
- 等級公路大中修管理辦法
- 浙江省嘉興市南湖區(qū)第一中學2025屆高一物理第二學期期末經(jīng)典模擬試題含解析
- 福建省漳州市重點初中2025年物理高一第二學期期末調(diào)研試題含解析
- 2025年福建省永春一中、培元、季延、石光中學四校物理高二第二學期期末綜合測試模擬試題含解析
- 2025年深圳市育才中學物理高二下期末經(jīng)典試題含解析
- 員工崗位安全管理制度
- 江干區(qū)財務機構(gòu)管理辦法
- 【正版授權】 ISO 2903:2016 ISO metric trapezoidal screw threads - Tolerances
- 萬科物業(yè)服務工作手冊
- 人教版小學英語單詞表(完整版)
- 共享工作室租賃合同
- DL-T 1476-2023 電力安全工器具預防性試驗規(guī)程
- 無人機航空測繪與后期制作 課件 第二十二課時 ContextCapture傾斜攝影測量數(shù)據(jù)處理流程-空三加密
- 2024招投標法培訓
- 溧陽市安息堂規(guī)劃建設方案
- 學校準軍事化管理投標方案(技術方案)
- 2024年國家電網(wǎng)招聘之金融類題庫【易錯題】
- 2023年-2024年鐵道運輸行業(yè)-鐵路信號工競賽理論考試題庫附答案
評論
0/150
提交評論