




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 八年級(jí)上冊(cè)知識(shí)點(diǎn)總結(jié)第十一章 全等三角形復(fù)習(xí)一、全等三角形1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。理解:全等三角形形狀與大小完全相等,與位置無關(guān);一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;三角形全等不因位置發(fā)生變化而改變。2、全等三角形有哪些性質(zhì)(1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。理解:長邊對(duì)長邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角。(2)全等三角形的周長相等、面積相等。(3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“SSS”)邊角邊:
2、兩邊與它們的夾角對(duì)應(yīng)相等兩個(gè)三角形全等(可簡(jiǎn)寫成“SAS”)角邊角:兩角與它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“ASA”)角角邊:兩角與其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“AAS”)斜邊.直角邊:斜邊與一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可簡(jiǎn)寫成“HL”)4、證明兩個(gè)三角形全等的基本思路:二、角的平分線:從一個(gè)角的頂點(diǎn)得出一條射線把這個(gè)角分成兩個(gè)相等的角,稱這條射線為這個(gè)角的平分線。1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問題:(1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)
3、角”與“對(duì)角”的不同含義;(2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫在對(duì)應(yīng)的位置上;(3) “有三個(gè)角對(duì)應(yīng)相等”或“有兩邊與其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;(4)時(shí)刻注意圖形中的隱含條件,如 “公共角” 、“公共邊”、“對(duì)頂角”(5)截長補(bǔ)短法證三角形全等。第十二章 軸對(duì)稱一、軸對(duì)稱圖形1. 把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。2. 把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊
4、后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)3、軸對(duì)稱圖形與軸對(duì)稱的區(qū)別與聯(lián)系 4.軸對(duì)稱與軸對(duì)稱圖形的性質(zhì) 關(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。 如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。 軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。兩個(gè)圖形關(guān)于某條直線成軸對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上。二、線段的垂直平分線1.定義:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2.性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等 3.
5、判定:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上三、用坐標(biāo)表示軸對(duì)稱小結(jié): 1.在平面直角坐標(biāo)系中關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;關(guān)于原點(diǎn)對(duì)稱的點(diǎn)橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);與X軸或Y軸平行的直線的兩個(gè)點(diǎn)橫(縱)坐標(biāo)的關(guān)系;關(guān)于與直線X=C或Y=C對(duì)稱的坐標(biāo)點(diǎn)(x, y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_ (x, -y)_.點(diǎn)(x, y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為_(-x, y)_.2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等四、(等腰三角形)知識(shí)點(diǎn)回顧1.等腰三角形的性質(zhì).等腰三角形的兩個(gè)底角相等。(等邊對(duì)
6、等角).等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)理解:已知等腰三角形的一線就可以推知另兩線。2、等腰三角形的判定: 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)五、(等邊三角形)知識(shí)點(diǎn)回顧1.等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于60º 。2、等邊三角形的判定: 三個(gè)角都相等的三角形是等邊三角形。 有一個(gè)角是60º的等腰三角形是等邊三角形。3.在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。第十三章 實(shí)數(shù)知識(shí)要點(diǎn)歸納一、 實(shí)數(shù)的分類:正整數(shù)整數(shù) 零有理數(shù) 負(fù)整數(shù) 有限小
7、數(shù)或無限循環(huán)小數(shù)分?jǐn)?shù) 正分?jǐn)?shù)負(fù)分?jǐn)?shù) 小數(shù) 1.實(shí)數(shù) 正無理數(shù)無理數(shù) 無限不循環(huán)小數(shù) 負(fù)無理數(shù)2、數(shù)軸:規(guī)定了 、 與 的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注童上述規(guī)定的三要素缺一個(gè)不可), 實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。 數(shù)軸上任一點(diǎn)對(duì)應(yīng)的數(shù)總大于這個(gè)點(diǎn)左邊的點(diǎn)對(duì)應(yīng)的數(shù)。3、相反數(shù)與倒數(shù);4、絕對(duì)值 5、近似數(shù)與有效數(shù)字;6、科學(xué)記數(shù)法7、平方根與算術(shù)平方根、立方根;8、非負(fù)數(shù)的性質(zhì):若幾個(gè)非負(fù)數(shù)之與為零 ,則這幾個(gè)數(shù)都等于零。二、復(fù)習(xí)1. 無理數(shù):無限不循環(huán)小數(shù)第十四章 一次函數(shù)一.常量、變量: 在一個(gè)變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 。二、函數(shù)的概念:函數(shù)的定義
8、:一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)三、函數(shù)中自變量取值范圍的求法:(1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。 用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一 切實(shí)數(shù)。(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。(5)對(duì)于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。四、
9、函數(shù)圖象的定義:一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟1、列表(表中給出一些自變量的值與其對(duì)應(yīng)的函數(shù)值。)注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對(duì)稱。2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。六、函數(shù)有三種表示形式:(1)列表法 (2)圖像法 (3)解析式法七、正比例函數(shù)與一次函數(shù)的概念:一般地,形如y=kx(k為常數(shù),且k0)的函數(shù)叫做
10、正比例函數(shù).其中k叫做比例系數(shù)。 一般地,形如y=kx+b (k,b為常數(shù),且k0)的函數(shù)叫做一次函數(shù). 當(dāng)b =0 時(shí),y=kx+b 即為 y=kx,所以正比例函數(shù),是一次函數(shù)的特例.八、正比例函數(shù)的圖象與性質(zhì):(1)圖象:正比例函數(shù)y= kx (k 是常數(shù),k0) 的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y= kx 。 (2)性質(zhì):當(dāng)k>0時(shí),直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著 x的增大y反而減小。九、求函數(shù)解析式的方法:待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的
11、系數(shù),從而具體寫出這個(gè)式子的方法。1. 一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時(shí)函數(shù)y= ax+b的值為0 2. 求ax+b=0(a, b是常數(shù),a0)的解,從“形”的角度看,求直線y= ax+b與 x 軸交點(diǎn)的橫坐標(biāo)3. 一次函數(shù)與一元一次不等式:解不等式ax+b0(a,b是常數(shù),a0) 從“數(shù)”的角度看,x為何值時(shí)函數(shù)y= ax+b的值大于0 4. 解不等式ax+b0(a,b是常數(shù),a0) 從“形”的角度看,求直線y= ax+b在 x 軸上方的部分(射線)所對(duì)應(yīng)的的橫坐標(biāo)的取值范圍十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)一次函數(shù) 概念如果y=kx+b(k、b是常數(shù),k0),那么y叫x
12、的一次函數(shù).當(dāng)b=0時(shí),一次函數(shù)y=kx(k0)也叫正比例函數(shù). 圖像一條直線性質(zhì)k0時(shí),y隨x的增大(或減小)而增大(或減小);k0時(shí),y隨x的增大(或減小)而減小(或增大). 直線y=kx+b(k0)的位置與k、b符號(hào)之間的關(guān)系.(1)k>0,b0圖像經(jīng)過一、二、三象限;(2)k>0,b0圖像經(jīng)過一、三、四象限;(3)k>0,b0 圖像經(jīng)過一、三象限;(4)k0,b0圖像經(jīng)過一、二、四象限;(5)k0,b0圖像經(jīng)過二、三、四象限;(6)k0,b0圖像經(jīng)過二、四象限。一次函數(shù)表達(dá)式的確定求一次函數(shù)y=kx+b(k、b是常數(shù),k0)時(shí),需要由兩個(gè)點(diǎn)來確定;求正比例函數(shù)y=kx
13、(k0)時(shí),只需一個(gè)點(diǎn)即可. 5.一次函數(shù)與二元一次方程組:解方程組從“數(shù)”的角度看,自變量(x)為何值時(shí)兩個(gè)函數(shù)的值相等并求出這個(gè)函數(shù)值 解方程組 從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo).第十五章 整式乘除與因式分解一回顧知識(shí)點(diǎn) 1、主要知識(shí)回顧:冪的運(yùn)算性質(zhì):am·anamn (m、n為正整數(shù))同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加 amn (m、n為正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘 (n為正整數(shù))積的乘方等于各因式乘方的積 amn (a0,m、n都是正整數(shù),且mn)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減零指數(shù)冪的概念:a01 (a0)任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l負(fù)指數(shù)冪的概念
14、:ap (a0,p是正整數(shù))任何一個(gè)不等于零的數(shù)的p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù)也可表示為:(m0,n0,p為正整數(shù))單項(xiàng)式的乘法法則:?jiǎn)雾?xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式單項(xiàng)式與多項(xiàng)式的乘法法則:?jiǎn)雾?xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式與多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加單項(xiàng)式的除法法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一
15、個(gè)因式多項(xiàng)式除以單項(xiàng)式的法則:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加 2、乘法公式:平方差公式:(ab)(ab)a2b2文字語言敘述:兩個(gè)數(shù)的與與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差完全平方公式:(ab)2a22abb2 (ab)2a22abb2文字語言敘述:兩個(gè)數(shù)的與(或差)的平方等于這兩個(gè)數(shù)的平方與加上(或減去)這兩個(gè)數(shù)的積的2倍 3、因式分解:因式分解的定義把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解 掌握其定義應(yīng)注意以下幾點(diǎn): (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要
16、素缺一不可;(2)因式分解必須是恒等變形; (3)因式分解必須分解到每個(gè)因式都不能分解為止弄清因式分解與整式乘法的內(nèi)在的關(guān)系因式分解與整式乘法是互逆變形,因式分解是把與差化為積的形式,而整式乘法是把積化為與差的形式 二、熟練掌握因式分解的常用方法1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);字母各項(xiàng)含有的相同字母;指數(shù)相同字母的最低次數(shù);(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)
17、是否漏項(xiàng)(4)注意點(diǎn):提取公因式后各因式應(yīng)該是最簡(jiǎn)形式,即分解到“底”;如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的 2、公式法運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)2八年級(jí)下冊(cè)知識(shí)點(diǎn)總結(jié)第十六章 分式1. 分式的定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子叫做分式。2. 分式有意義、無意義的條件:分式有意義的條件:分式的分母不等于0;分式無意義的條件:分式的分母等于0。3. 分式值為零的條件:當(dāng)分式的分子等
18、于0且分母不等于0時(shí),分式的值為0。 (分式的值是在分式有意義的前提下才可以考慮的,所以使分式為0的條件是A0,且B0.) (分式的值為0的條件是:分子等于0,分母不等于0,二者缺一不可。首先求出使分子為0的字母的值,再檢驗(yàn)這個(gè)字母的值是否使分母的值為0.當(dāng)分母的值不為0時(shí),就是所要求的字母的值。)4. 分式的基本性質(zhì):分式的分子與分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。 用式子表示為 (),其中A、B、C是整式 注意:(1)“C是一個(gè)不等于0的整式”是分式基本性質(zhì)的一個(gè)制約條件; (2)應(yīng)用分式的基本性質(zhì)時(shí),要深刻理解“同”的含義,避免犯只乘分子(或分母)的錯(cuò)誤; (3)若分式的
19、分子或分母是多項(xiàng)式,運(yùn)用分式的基本性質(zhì)時(shí),要先用括號(hào)把分子或分母括上,再乘或除以同一 整式C; (4)分式的基本性質(zhì)是分式進(jìn)行約分、通分與符號(hào)變化的依據(jù)。5.分式的通分: 與分?jǐn)?shù)類似,利用分式的基本性質(zhì),使分子與分母同乘適當(dāng)?shù)恼剑桓淖兎质降闹?,把幾個(gè)異分母分式化成相同分母的分式,這樣的分式變形叫做分式的通分。通分的關(guān)鍵是確定幾個(gè)式子的最簡(jiǎn)公分母。幾個(gè)分式通分時(shí),通常取各分母所有因式的最高次冪的積作為公分母,這樣的分母就叫做最簡(jiǎn)公分母。求最簡(jiǎn)公分母時(shí)應(yīng)注意以下幾點(diǎn):(1)“各分母所有因式的最高次冪”是指凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪選取指數(shù)最大的;(2)如果各分母的系數(shù)都是整數(shù)時(shí),
20、通常取它們系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù);(3)如果分母是多項(xiàng)式,一般應(yīng)先分解因式。6.分式的約分: 與分?jǐn)?shù)一樣,根據(jù)分式的基本性質(zhì),約去分式的分子與分母中的公因式,不改變分式的值,這樣的分式變形叫 做分式的約分。約分后分式的分子、分母中不再含有公因式,這樣的分式叫最簡(jiǎn)公因式。 約分的關(guān)鍵是找出分式中分子與分母的公因式。(1)約分時(shí)注意分式的分子、分母都是乘積形式才能進(jìn)行約分;分子、分母是多項(xiàng)式時(shí),通常將分子、分母分解因式,然后再約分;(2)找公因式的方法: 當(dāng)分子、分母都是單項(xiàng)式時(shí),先找分子、分母系數(shù)的最大公約數(shù),再找相同字母的最低次冪,它們的積就是公因式;當(dāng)分子、分母都是多項(xiàng)式時(shí),先
21、把多項(xiàng)式因式分解。易錯(cuò)點(diǎn):(1)當(dāng)分子或分母是一個(gè)式子時(shí),要看做一個(gè)整體,易出現(xiàn)漏乘(或漏除以); (2)在式子變形中要注意分子與分母的符號(hào)變化,一般情況下要把分子或分母前的“” 放在分?jǐn)?shù)線前; (3)確定幾個(gè)分式的最簡(jiǎn)公分母時(shí),要防止遺漏只在一個(gè)分母中出現(xiàn)的字母; 7.分式的運(yùn)算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。 分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。 用式子表示是: 提示:(1)分式與分式相乘,若分子、分母是單項(xiàng)式,可先將分子、分母分別相乘,然后約去公因式,化為最簡(jiǎn)分式;若分子、分母是多項(xiàng)式,先把分子、分母分解公因式
22、,看能否約分,然后再相乘; (2)當(dāng)分式與整式相乘時(shí),要把整式與分式的分子相乘作為積的分子,分母不變 (3)分式的除法可以轉(zhuǎn)化為分式的乘法運(yùn)算; (4)分式的乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算。 分式的乘除法混合運(yùn)算順序與分?jǐn)?shù)的乘除混合運(yùn)算相同,即按照從左到右的順序,有括號(hào)先算括號(hào)里面的; 分式的乘除混合運(yùn)算要注意各分式中分子、分母符號(hào)的處理,可先確定積的符號(hào); 分式的乘除混合運(yùn)算結(jié)果要通過約分化為最簡(jiǎn)分式(分式的分子、分母沒有公因式)或整式的形式。分式乘方法則:分式乘方要把分子、分母各自乘方。用式子表示是: (其中n是正整數(shù)) 注意:(1)乘方時(shí),一定要把分式加上括號(hào); (2)分式乘方時(shí)確定乘方結(jié)果
23、的符號(hào)與有理數(shù)乘方相同,即正分式的任何次冪都為正;負(fù)分式的偶次冪為正,奇次冪為負(fù); (3)分式乘方時(shí),應(yīng)把分子、分母分別看做一個(gè)整體; (4)在一個(gè)算式中同時(shí)含有分式的乘方、乘法、除法時(shí),應(yīng)先算乘方,再算乘除,有多項(xiàng)式時(shí)應(yīng)先分解因式,再約分。 分式的加減法則:法則:同分母的分式相加減,分母不變,把分子相加減。 用式子表示為:± 法則:異分母的分式相加減,先通分,轉(zhuǎn)化為同分母分式,然后再加減。用式子表示為: ± ± 注意:(1)“把分子相加減”是把各個(gè)分子的整體相加減,即各個(gè)分子應(yīng)先加上括號(hào)后再加減,分子是單項(xiàng)式時(shí)括號(hào)可以省略; (2)異分母分式相加減,“先通分”是
24、關(guān)鍵,最簡(jiǎn)公分母確定后再通分,計(jì)算時(shí)要注意分式中符號(hào)的處理,特別是分子相減,要注意分子的整體性; (3)運(yùn)算時(shí)順序合理、步驟清晰; (4)運(yùn)算結(jié)果必須化成最簡(jiǎn)分式或整式。分式的混合運(yùn)算:分式的混合運(yùn)算,關(guān)鍵是弄清運(yùn)算順序,與分?jǐn)?shù)的加、減、乘、除與乘方的混合運(yùn)算一樣,先算乘方,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里面的,計(jì)算結(jié)果要化為整式或最簡(jiǎn)分式。8. 任何一個(gè)不等于零的數(shù)的零次冪等于1, 即;當(dāng)n為正整數(shù)時(shí), ( 注意:當(dāng)冪指數(shù)為負(fù)整數(shù)時(shí),最后的計(jì)算結(jié)果要把冪指數(shù)化為正整數(shù)。9. 整數(shù)指數(shù)冪: 若m、n為正整數(shù),a0,am ÷amn 又因?yàn)閍m ÷amnammnan,所
25、以a n 一般地,當(dāng)n是正整數(shù)時(shí),a n(a0),即a n(a0)是an的倒數(shù),這樣指數(shù)的取值范圍就推廣到全體整數(shù)。整數(shù)指數(shù)冪可具有下列運(yùn)算性質(zhì):(m,n是整數(shù)) (1)同底數(shù)的冪的乘法:;(2)冪的乘方:;(3)積的乘方:;(4)同底數(shù)的冪的除法:( a0);(5)商的乘方: ;(b0)規(guī)定:a01(a0),即任何不等于0的零次冪都等于1.10. 分式方程:含分式,并且分母中含未知數(shù)的方程叫做分式方程。分式方程的解法: 去分母轉(zhuǎn)化(1)解分式方程的基本思想方法是:分式方程 整式方程.(2)解分式方程的一般方法與步驟: 去分母:即在方程的兩邊都同時(shí)乘以最簡(jiǎn)公分母,把分式方程化為整式方程,依據(jù)是
26、等式的基本性質(zhì); 解這個(gè)整式方程; 檢驗(yàn):把整式方程的解代入最簡(jiǎn)公分母,使最簡(jiǎn)公分母不等于0的解是原方程的解,使最簡(jiǎn)公分母等于0的解不是原方程的解,即說明原分式方程無解。注意: 去分母時(shí),方程兩邊的每一項(xiàng)都乘以最簡(jiǎn)公分母,不要漏乘不含分母的項(xiàng); 解分式方程必須要驗(yàn)根,千萬不要忘了!解分式方程的步驟 :(1)能化簡(jiǎn)的先化簡(jiǎn);(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;(3)解整式方程;(4)驗(yàn)根分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。 11.含有字母的分式方程的解法: 在數(shù)學(xué)式子的字母不僅可以表示
27、未知數(shù),也可以表示已知數(shù),含有字母已知數(shù)的分式方程的解法,也是去分母, 解整式方程,檢驗(yàn)這三個(gè)步驟,需要注意的是要找準(zhǔn)哪個(gè)字母表示未知數(shù),哪個(gè)字母表示未知數(shù),還要注意題目的限制條件。計(jì)算結(jié)果是用已知數(shù)表示未知數(shù),不要混淆。 12.列分式方程解應(yīng)用題的步驟是: (1)審:審清題意;(2)找: 找出相等關(guān)系;(3)設(shè):設(shè)未知數(shù);(4)列:列出分式方程;(5)解:解這個(gè)分式方程;(6)驗(yàn):既要檢驗(yàn)根是否是所列分式方程的解,又要檢驗(yàn)根是否符合題意;(7)答:寫出答案。應(yīng)用題有幾種類型;基本公式是什么?基本上有五種: (1)行程問題 基本公式:路程=速度×時(shí)間 而行程問題中又分相遇問題、追與問
28、題 (2)數(shù)字問題:在數(shù)字問題中要掌握十進(jìn)制數(shù)的表示法(3)工程問題 基本公式:工作量=工時(shí)×工效 (4)順?biāo)嫠畣栴} v順?biāo)?v靜水+v水 v逆水=v靜水-v水11.科學(xué)記數(shù)法:把一個(gè)數(shù)表示成的形式(其中,n是整數(shù))的記數(shù)方法叫做科學(xué)記數(shù)法用科學(xué)記數(shù)法表示絕對(duì)值大于1的數(shù)時(shí),應(yīng)當(dāng)表示為a×10n的形式,其中1a10,n為原整數(shù)部分的位數(shù)減1; 用科學(xué)記數(shù)法表示絕對(duì)值小于1的數(shù)時(shí),則可表示為a×10n的形式,其中n為原數(shù)第1個(gè)不為0的數(shù)字前面所有0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的那個(gè)0),1a10.第十七章 反比例函數(shù) 1.定義:一般地,如果兩個(gè)變量x、y之間的關(guān)系表示成
29、y(k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù),其中x是自變量,y是函數(shù)。例如y; y- ; y(m為常數(shù))等。提示:(1)y也可以寫作y=kx-1的形式或xy=k的形式(k為常數(shù)且k0); (2)反比例函數(shù)的自變量x不能為0; (3)k=xy是反比例函數(shù)的另一種表示形式,即兩變量的積是一個(gè)常數(shù)。2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形。有兩條對(duì)稱軸:直線y=x與 y=-x。對(duì)稱中心是:原點(diǎn)。3.性質(zhì):當(dāng)k0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨
30、x值的增大而增大。 4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。知識(shí)點(diǎn):1·一般地,如果兩個(gè)變量x、y之間的關(guān)系可表示成y(K為常數(shù),K0)的形式,那么稱y是x的反比例函數(shù)。反比例函數(shù)的自變量x不能為零。2·反比例函數(shù)的圖象與其畫法反比例函數(shù)圖象的畫法描點(diǎn)法: 列表自變量取值應(yīng)以0(但(x0)為中心,向兩邊取三對(duì)(或三對(duì)以上)互為相反數(shù)的數(shù),再求出對(duì)應(yīng)的y的值; 描點(diǎn)先描出一側(cè),另一側(cè)可根據(jù)中心對(duì)稱點(diǎn)的性質(zhì)去找; 連線按照從左到右的順序連接各點(diǎn)并延伸,注意雙曲線的兩個(gè)分支是斷開的,延伸部分有逐漸靠近坐標(biāo)軸的趨勢(shì),但永遠(yuǎn)不與
31、坐標(biāo)軸相交。反比例函數(shù)y的圖象是由兩支曲線組成的。當(dāng)k0時(shí),兩支曲線分別位于第一、三象限內(nèi),當(dāng)k0時(shí),兩支曲線分別位于第二、四象限內(nèi)。小注: 這兩支曲線通常稱為雙曲線。 這兩支曲線關(guān)于原點(diǎn)對(duì)稱。 反比例函數(shù)的圖象與x軸、y軸沒有公共點(diǎn)。反比例函數(shù)k的符號(hào)k > 0k < 0圖象(雙曲線) x、y取值范圍x的取值范圍x0y的取值范圍y0x的取值范圍x 0y的取值范圍y 0位置第一,三象限內(nèi)第二,四象限內(nèi)性質(zhì)(1)自變量x的取值范圍為:x 0;(2)函數(shù)圖象的兩個(gè)分支分別在第一、第三象限,在每個(gè)象限內(nèi),y值隨x值的增大而減小。(1)自變量x的取值范圍為:x 0;(2)函數(shù)圖象的兩個(gè)分支
32、分別在第二、第四象限,在每個(gè)象限內(nèi),y值隨x值的增大而減小。增減性每一象限內(nèi),y隨x的增大而減小每一象限內(nèi),y隨x的增大而增大漸近性反比例函數(shù)的圖象無限接近于x,y軸,但永遠(yuǎn)達(dá)不到x,y軸,畫圖象時(shí),要表達(dá)出這個(gè)特點(diǎn).對(duì)稱性反比例函數(shù)的圖象是關(guān)于原點(diǎn)成中心對(duì)稱的圖形.反比例函數(shù)的圖象也是軸對(duì)稱圖形.提示:(1)反比例函數(shù)y(k0),因?yàn)閤0,y0,故圖像不經(jīng)過原點(diǎn),雙曲線是由兩個(gè)分支組成的,一般不說兩個(gè)分支經(jīng)過第一、第三象限(或第二、第四象限),而說圖像的兩個(gè)分支分別在第一、第三象限(或第二、第四象限) (2)反比例函數(shù)的增減性不是連續(xù)的,因此在談到反比例函數(shù)的增減性時(shí),一般是在各自的象限內(nèi)的
33、增減情況; (3)反比例函數(shù)的圖像無限接近坐標(biāo)軸,但永遠(yuǎn)不能與坐標(biāo)軸相交,也不能“翹尾巴”; (4)反比例函數(shù)圖像的位置與函數(shù)的增減性都是由反比例系數(shù)k的符號(hào)決定的;反過來,由雙曲線所在位置與函數(shù)的增減性,也可以推斷出k的符號(hào)。如:已知雙曲線y在第二、第四象限,則可知k0. 第十八章 勾股定理 1.勾股定理:直角三角形兩直角邊的平方與等于斜邊的平方,即如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2。2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個(gè)三角形是直角三角形。 3.經(jīng)過證明被確認(rèn)正確的命題叫做定理。 我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫
34、做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 4.直角三角形的性質(zhì) (1)直角三角形的兩個(gè)銳角互余??杀硎救缦拢篊=90°A+B=90° (2)在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。 A=30° 可表示如下: BC =AB C=90° (3)直角三角形斜邊上的中線等于斜邊的一半。 ACB=90° 可表示如下: CD =AB = BD = AD D為AB的中點(diǎn)5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項(xiàng),每條直角邊是它們?cè)谛边吷系臄z影與斜邊的
35、比例中項(xiàng)ACB = 90° CDAB 6、常用關(guān)系式由三角形面積公式可得:AB·CD=AC·BC7、直角三角形的判定 1、有一個(gè)角是直角的三角形是直角三角形。 2、如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三邊長a,b,c有關(guān)系,那么這個(gè)三角形是直角三角形。8、命題、定理、證明 命題的概念:判斷一件事情的語句,叫做命題。理解:命題的定義包括兩層含義:(1)命題必須是個(gè)完整的句子;(2)這個(gè)句子必須對(duì)某件事情做出判斷。 命題的分類(按正確、錯(cuò)誤與否分) 真命題(正確的命題)命題 假命題(錯(cuò)誤的命題)所謂正確的
36、命題就是:如果題設(shè)成立,那么結(jié)論一定成立的命題。所謂錯(cuò)誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。 公理:人們?cè)陂L期實(shí)踐中總結(jié)出來的得到人們公認(rèn)的真命題,叫做公理。 定理:用推理的方法判斷為正確的命題叫做定理。 證明:判斷一個(gè)命題的正確性的推理過程叫做證明。 證明的一般步驟 根據(jù)題意,畫出圖形。 根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫出已知、求證。 經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。9、數(shù)學(xué)口訣. 平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。 完全平方公式:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括
37、號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。 第十九章 四邊形 一、平行四邊形:.平行四邊形定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。 .平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線互相平分。 . 平行四邊形的面積:1. 平行四邊形的面積=底×高= ah(a是平行四邊形的任何一條邊長,h必須是邊長為a的邊與其對(duì)邊的距離)2. 同底(等底)同高(等高)的平行四邊形面積相等。.平行四邊形的判定 1.兩組對(duì)邊分別平行的四邊形是平行四邊形;2.兩組對(duì)邊分別相等的四邊形是平行四邊形;3.兩組對(duì)角分別相等的四邊形是平行四邊形; 4.對(duì)角線互相平分的四邊形是平行四邊形;5.
38、一組對(duì)邊平行且相等的四邊形是平行四邊形。 提示:(1)平行四邊形的判定方法都需要關(guān)于邊、角、對(duì)角線之間的兩個(gè)適當(dāng)條件作為命題正確的構(gòu)成條件; (2)判定方法可作為 “畫平行四邊形”的依據(jù); (3)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形不一定是平行四邊形。 三角形中的中位線1、三角形的中位線:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。2、三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。提示:(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。每一條中位線與第三邊都有相應(yīng)的位置關(guān)系與數(shù)量關(guān)系。 (三角形的中位線不僅可以證明直線平行,也可以證明線段的倍分關(guān)系);(
39、2)三角形中位線不同于三角形的中線,應(yīng)從它們各自的定義加以區(qū)別。3、三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個(gè)三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。結(jié)論4:三角形一條中線與與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。 兩條平行線間的距離1、定義:兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線間的
40、距離。2、性質(zhì): 兩條平行線間的距離處處相等; 兩條平行線間的任何兩條平行線段都是相等的。二、矩形1、矩形的定義:有一個(gè)角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì): 矩形具有平行四邊形的一切性質(zhì); 矩形的四個(gè)角都是直角; 矩形的對(duì)角線平分且相等; (AC=BD) 矩形是軸對(duì)稱圖形,它有2條對(duì)稱軸。提示: “矩形的四個(gè)角都是直角”這一性質(zhì)可用來證兩條線段互相垂直或角相等,“矩形的對(duì)角線相等”這一性質(zhì)可用來證線段相等; 矩形的兩條對(duì)角線分矩形為面積相等的四個(gè)等腰三角形。3、矩形判定方法: 定義:有一個(gè)角是直角的平行四邊形叫做矩形。 方法1:對(duì)角線相等的平行四邊形是矩形。 方法2:有三個(gè)角是直角的
41、四邊形是矩形。三、菱形1、菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。2、菱形的性質(zhì): 矩形具有平行四邊形的一切性質(zhì); 菱形的四條邊都相等; 菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。 菱形是軸對(duì)稱圖形。提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系, 可得對(duì)角線與邊之間的關(guān)系,即邊長的平方等于對(duì)角線一半的平方與。3、菱形的判定方法: 定義:一組鄰邊相等的平行四邊形是菱形。 判斷方法1:對(duì)角線互相垂直的平行四邊形是菱形。 判斷方法2:四條邊相等的四邊形是菱形。4、菱形面積的計(jì)算:菱形面積 = 底
42、5;高 = 對(duì)角線長乘積的一半 S菱形=1/2×ab(a、b為兩條對(duì)角線) 歸納:對(duì)角線互相垂直的四邊形的面積等于對(duì)角線長乘積的一半。四、正方形1、正方形定義:有一組鄰邊相等且有一個(gè)角是直角的平行四邊形叫做正方形。警示: 正方形既是有一組鄰邊相等的矩形,又是有一個(gè)角是直角的菱形; 既是矩形又是菱形的四邊形是正方形; 正方形不僅是特殊的平行四邊形,而且是特殊的矩形,還是特殊的菱形。2、正方形的性質(zhì):正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì)。 邊 四條邊都相等,鄰邊垂直、對(duì)邊平行; 角 四個(gè)角都是直角; 對(duì)角線 對(duì)角線相等且互相垂直平分,每條對(duì)角線平分一組對(duì)角; 對(duì)稱性 是軸對(duì)稱圖形,有四條對(duì)稱軸。 特殊性質(zhì) 正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,對(duì)角線與邊的夾角是45°; 正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形3、正方形的判定: 判定一個(gè)四邊形為正方形的主要依據(jù)是定義,途徑有兩條: 先證它是矩形,再證它有一組鄰邊相等; 先證它是菱形,再證它有一個(gè)角是直角。 五、梯形1、梯形的定義: 一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智力基礎(chǔ)測(cè)試題及答案
- 清單制度面試題及答案
- 在建工程消防安全知識(shí)培訓(xùn)
- 發(fā)熱患者護(hù)理常規(guī)
- 回腸造瘺管護(hù)理
- 采購財(cái)務(wù)知識(shí)培訓(xùn)
- 腫瘤登記報(bào)告卡規(guī)范與實(shí)施
- 客戶經(jīng)理十個(gè)嚴(yán)禁培訓(xùn)
- 班長質(zhì)量培訓(xùn)課件
- 新源縣哈拉布拉鎮(zhèn)麥后復(fù)播大豆高產(chǎn)栽培技術(shù)
- 《人民法院》課件
- 青海大學(xué)《普通化學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 《傳感器與檢測(cè)技術(shù)》全套教案
- 人力資源 公司勞務(wù)派遣招聘流程及制度
- 新版人音版小學(xué)音樂一年級(jí)下冊(cè)全冊(cè)教案
- 初中語文:非連續(xù)性文本閱讀練習(xí)(含答案)
- 國開(山東)2024年《小學(xué)生心理健康教育》形考1-3終考答案
- 人工智能營銷(第2版)課件全套 陽翼 第1-8章 邁入人工智能領(lǐng)域-人工智能營銷的倫理與法律問題
- 上海市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)練習(xí)卷(解析版)
- RCA分析之給藥錯(cuò)誤課件
- 高級(jí)護(hù)理實(shí)踐智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學(xué)
評(píng)論
0/150
提交評(píng)論