3.5函數(shù)的極值與最大值最小值_第1頁(yè)
3.5函數(shù)的極值與最大值最小值_第2頁(yè)
3.5函數(shù)的極值與最大值最小值_第3頁(yè)
3.5函數(shù)的極值與最大值最小值_第4頁(yè)
3.5函數(shù)的極值與最大值最小值_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余40頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、二、最大值最小值問(wèn)題一、函數(shù)的極值及其求法3.5 函數(shù)的極值與最大值最小值高等The extremum, maximum value and minimum value of function 數(shù)學(xué)安徽財(cái)經(jīng)大學(xué) Anhui University of Finance& Economics1959編高等數(shù)學(xué)2.2、閉區(qū)間最值的求法二、最大值最小值問(wèn)題2.1、最值的問(wèn)題與定義1.3、函數(shù)極值充分條件1.1、函數(shù)極值的定義一、函數(shù)極值及其求法1.2、函數(shù)極值點(diǎn)必要條件2.3、實(shí)際問(wèn)題最值求法三、小結(jié)練習(xí):第162頁(yè) 1;2;4;6。思考題下命題正確嗎?作業(yè):第162頁(yè) 1;4;8;10;15。3.5

2、 函數(shù)的極值與最大值最小值課前練習(xí)課前練習(xí)課前練習(xí)課前練習(xí)課前練習(xí)一、函數(shù)的極值及其求法極值點(diǎn):使函數(shù)取得極值的點(diǎn)x0。注:極大值點(diǎn)與極小值點(diǎn)不唯一。極值是局部性的,在定義域內(nèi)未必為最值。對(duì)一個(gè)函數(shù)而言, 極小值可能比極大值大。1.1、函數(shù)極值的定義極值:函數(shù)的極大值與極小值的統(tǒng)稱。極值是內(nèi)部性的,不考慮端點(diǎn)。一、函數(shù)的極值及其求法例如:一、函數(shù)的極值及其求法定理(極值的必要條件)注1:1.2、函數(shù)極值點(diǎn)的必要條件注2:駐 點(diǎn) 不可 導(dǎo)點(diǎn)極值點(diǎn)例如:注3:例如:一、函數(shù)的極值及其求法1.3、函數(shù)極值的充分條件定理(極值的第一判別法)利用函數(shù)的單調(diào)性和極值的概念即可證明.一、函數(shù)的極值及其求法(

3、導(dǎo)數(shù)改變符號(hào), 是極值點(diǎn)情形)(導(dǎo)數(shù)不改變符號(hào), 非極值點(diǎn)情形)求極值的步驟:一、函數(shù)的極值及其求法例1解列表討論極大值極小值圖形如右一、函數(shù)的極值及其求法一、函數(shù)的極值及其求法例2解例3解一、函數(shù)的極值及其求法1.3、函數(shù)極值的充分條件定理(極值的第二判別法)證: 同理可證.一、函數(shù)的極值及其求法例4解:注意:一、函數(shù)的極值及其求法例5解函數(shù)的圖形如右注意:一、函數(shù)的極值及其求法例6解一、函數(shù)的極值及其求法例7解注3:函數(shù)的不可導(dǎo)點(diǎn),也可能是函數(shù)的極值點(diǎn)。一、函數(shù)的極值及其求法關(guān)于隱函數(shù)的極值解:例8一、函數(shù)的極值及其求法關(guān)于隱函數(shù)的極值解:例9一、函數(shù)的極值及其求法關(guān)于隱函數(shù)的極值一、函數(shù)

4、的極值及其求法二、最大值最小值問(wèn)題2.1、最值的問(wèn)題與定義最值問(wèn)題: 在工農(nóng)業(yè)生產(chǎn)、工程技術(shù)和科學(xué)實(shí)驗(yàn)中,常會(huì)遇到一定條件下,怎樣使“成本最低” ,“利潤(rùn)最大”, “用料最省” 等,這類問(wèn)題一般可化為求某一函數(shù)(稱為目標(biāo)函數(shù))的最大值或最小值問(wèn)題。最值定義:函數(shù)的最大值與最小值統(tǒng)稱最值,使函數(shù)取得最值的點(diǎn)稱為最值點(diǎn)。最值與極值的區(qū)別:極值具有局部性,最值具有整體性.極值只能在區(qū)間內(nèi)取,最值可在端點(diǎn)或區(qū)間內(nèi)取.閉區(qū)間連續(xù)函數(shù)最值存在從以上幾段曲線可以看出:最值可以在開區(qū)間(a,b)內(nèi)點(diǎn)處取得,即極值點(diǎn),也就是有限個(gè)駐點(diǎn)與導(dǎo)數(shù)不存在的點(diǎn),同時(shí)最值也可以在整個(gè)區(qū)部的端點(diǎn)處取得。由此可按以下方法進(jìn)行求

5、最值。二、最大值最小值問(wèn)題閉區(qū)間連續(xù)函數(shù)最值的求法:2.2、最值的求法f(x)在閉區(qū)間a,b上連續(xù),按以下步驟求其最值:求出f在(a,b)內(nèi)的駐點(diǎn)與不可導(dǎo)點(diǎn)x1,x2,xn;計(jì)算函數(shù)值:f(a), f(x1), f(x2), f(xn), f(b); 通過(guò)比較確定f在a,b上的最值: ymax=maxf (a), f(x1), f(x2), f(xn), f(b); ymin=minf (a), f(x1), f(x2), f(xn), f(b).二、最大值最小值問(wèn)題應(yīng)用舉例例1解二、最大值最小值問(wèn)題關(guān)于最值的兩個(gè)特例二、最大值最小值問(wèn)題例2解計(jì)算比較得二、最大值最小值問(wèn)題例1 邊長(zhǎng)為a的正方

6、形,四個(gè)角裁去面積相等的四個(gè)小正方形,做成一個(gè)無(wú)蓋的盒子。問(wèn)小正方形邊長(zhǎng)為多少可使盒子容積最大?合理下料問(wèn)題;2.3、最值的應(yīng)用題二、最大值最小值問(wèn)題解:設(shè)小正方形邊長(zhǎng)為x,盒子容積為V則令二、最大值最小值問(wèn)題例2 做一容積為V的圓柱狀密封容器,問(wèn)如何設(shè)計(jì)尺寸,才能使所用的材料最省?解: 設(shè)圓柱的底面半徑為r,高為h,則全表面積為二、最大值最小值問(wèn)題例2 做一容積為V的圓柱狀密封容器,問(wèn)如何設(shè)計(jì)尺寸,才能使所用的材料最省?此時(shí)直徑為在容積一定的前提下,當(dāng)?shù)酌嬷睆脚c高相等時(shí),所做成的圓柱狀密封容器用料最省。二、最大值最小值問(wèn)題(2)經(jīng)濟(jì)利潤(rùn)問(wèn)題解:總成本函數(shù):例3 某工廠生產(chǎn)某產(chǎn)品,固定成本為4

7、00(百元),且每生產(chǎn)1臺(tái)產(chǎn)品總成本增加10(百元).若該產(chǎn)品需求量x(單位:臺(tái))是價(jià)格p(單位:百元/臺(tái))的函數(shù):則在產(chǎn)銷平衡的條件下,生產(chǎn)多少臺(tái)時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?收益函數(shù):利潤(rùn)函數(shù):二、最大值最小值問(wèn)題解:利潤(rùn)函數(shù):二、最大值最小值問(wèn)題(3)經(jīng)濟(jì)批量問(wèn)題; 生產(chǎn)(或銷售)要分批進(jìn)行; 批次進(jìn)貨次數(shù); 批量每次進(jìn)貨的數(shù)量; 過(guò)程均勻:平均庫(kù)存量為批量的一半。二、最大值最小值問(wèn)題例4 商店每年銷售某商品a件,每次購(gòu)進(jìn)的手續(xù)費(fèi)為b元,而每件的年庫(kù)存費(fèi)為c元,假定銷售過(guò)程均勻(此時(shí)平均庫(kù)存量為批量的一半),問(wèn)商店應(yīng)分幾批購(gòu)進(jìn)商品,可使手續(xù)費(fèi)與庫(kù)存費(fèi)之和最省?此時(shí)批量為多少?解:設(shè)分x批進(jìn)貨,則批量為二、最大值最小值問(wèn)題解:二、最大值最小值問(wèn)題改例4 商店每年銷售某商品a件,每次購(gòu)進(jìn)的手續(xù)費(fèi)為b元,而每件的年庫(kù)存費(fèi)為c元,假定銷售過(guò)程均勻(此時(shí)平均庫(kù)存量為批量的一半),問(wèn)商店每次批量為多少時(shí),可使手續(xù)費(fèi)與庫(kù)存費(fèi)之和最省?解:設(shè)批量為x ,則批次為二、最大值最小值問(wèn)題例5 某商品進(jìn)貨價(jià)為12元/件,若售價(jià)定為14元/件, 則可售出200件;若售價(jià)每降低0.1元,均可多售出50件,問(wèn)應(yīng)批進(jìn)多少件,每件售價(jià)多少,可獲得最大利

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論