

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、四川省成都市壽安中學(xué)2022年高三數(shù)學(xué)理模擬試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 函數(shù)f(x)=4sin(x)sin(x+)(0)的最小正周期為,且sin=,則f()=()A BCD參考答案:考點:由y=Asin(x+)的部分圖象確定其解析式專題:三角函數(shù)的圖像與性質(zhì)分析:利用三角恒等變換化簡函數(shù)的解析式為f(x)=2cos2x,再根據(jù)周期性求得,可得f(x)=2cos2x,再根據(jù)sin=,利用二倍角的余弦公式求得f()=2cos2 的值解答:解:f(x)=4sin(x)sin(x+)=4sin(x)cos(x+
2、)=4sin(x)cos(x)=2sin(2x)=2cos2x,且函數(shù)f(x)的最小正周期為 =,求得=1,故f(x)=2cos2x又sin=,則f()=2cos2=2(12sin2 )=4sin22=,故選:B點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性和求法,屬于中檔題2. 若a1,則在同一坐標(biāo)系中,函數(shù)f(x)=ax與函數(shù)g(x)=logax的圖象可能是( )ABCD參考答案:C考點:函數(shù)的圖象 專題:函數(shù)的性質(zhì)及應(yīng)用分析:根據(jù)a1,把函數(shù)等價變形:y=ax=為指數(shù)函數(shù)且為減函數(shù),再利用y=logax為對數(shù)函數(shù),即可得到答案解答:解:當(dāng)a1時,y=ax=為指數(shù)函數(shù)且為
3、減函數(shù),y=logax為對數(shù)函數(shù)且為增函數(shù),只有C符合,其它均不符合,故選:C點評:本題考查的知識是對數(shù)函數(shù)的圖象與性質(zhì),指數(shù)函數(shù)的圖象與性質(zhì),熟練掌握底數(shù)與指數(shù)(對數(shù))函數(shù)單調(diào)性的關(guān)系是解答本題的關(guān)鍵3. 若雙曲線x2=1(b0)的一條漸近線與圓x2+(y2)2=1至多有一個交點,則雙曲線離心率的取值范圍是()A(1,2B2,+)C(1,D,+)參考答案:A【考點】KC:雙曲線的簡單性質(zhì)【分析】雙曲線x2=1(b0)的一條漸近線與圓x2+(y2)2=1至多有一個交點,?圓心(0,2)到漸近線的距離半徑r解出即可【解答】解:圓x2+(y2)2=1的圓心(0,2),半徑r=1雙曲線x2=1(b0
4、)的一條漸近線與圓x2+(y2)2=1至多有一個交點,1,化為b23e2=1+b24,e1,1e2,該雙曲線的離心率的取值范圍是(1,2故選:A4. 一個四面體的頂點在空間直角坐標(biāo)系Oxyz中的坐標(biāo)分別是,則該四面體在yOz平面內(nèi)的投影為()A. B. C. D. 參考答案:D【分析】直接利用空間坐標(biāo)系的應(yīng)用和射影的應(yīng)用求出結(jié)果【詳解】一個四面體的頂點在空間直角坐標(biāo)系Oxyz中的坐標(biāo)分別是O(0,0,0),A(1,2,0),B(0,2,1),C(1,0,1),則建立空間直角坐標(biāo)系:如圖所示:所以該四面體在平面yoz平面內(nèi)的射影為矩形,其中AC的射影為實線,OB為虛線故選:D【點睛】本題考查的知
5、識要點:空間直角坐標(biāo)系的應(yīng)用,射影的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型5. 在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為( )A. B. C. D. 參考答案:C【分析】利用零點存在性定理,結(jié)合函數(shù)的單調(diào)性,判斷出正確選項.【詳解】依題意為上的增函數(shù),且,所以的零點在區(qū)間.故選:C【點睛】本小題主要考查零點存在性定理的應(yīng)用,屬于基礎(chǔ)題.6. 已知函數(shù),下面四個結(jié)論中正確的是( )A.函數(shù)的最小正周期為 B.函數(shù)的圖象關(guān)于直線對稱C.函數(shù)的圖象是由的圖象向左平移個單位得到D.函數(shù)是奇函數(shù)參考答案:D略7. 已知奇函數(shù)與偶函數(shù)滿足,且,則的值為A. B. 2 C. D. 參考答案:D8.
6、 函數(shù)ylog(x26x17)的值域是 () AR B8, C(,3 D3,參考答案:C9. 設(shè)當(dāng)x=時,函數(shù)f(x)=3sinx+4cosx取得最小值,則sin=()ABCD參考答案:C【考點】三角函數(shù)的最值【分析】利用輔助角公式將函數(shù)化為y=Asin(x+)的形式,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最小值解出,【解答】解:,其中,由f()=5sin(+)=5,可得sin(+)=1,kZ,kZ,故選:C【點評】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵屬于基礎(chǔ)題10. 已知函數(shù)f(x)與f(x)的圖象如圖所示,則函數(shù)g(
7、x)=的遞減區(qū)間為()A(0,4)BCD(0,1),(4,+)參考答案:D【考點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性【分析】結(jié)合函數(shù)圖象求出f(x)f(x)0成立的x的范圍即可【解答】解:結(jié)合圖象:x(0,1)和x(4,+)時,f(x)f(x)0,而g(x)=,故g(x)在(0,1),(4,+)遞減,故選:D二、 填空題:本大題共7小題,每小題4分,共28分11. 設(shè)f(z)=2z(cos+icos),這里z是復(fù)數(shù),用A表示原點,B表示f(1+i),C表示點-,則ABC= 。參考答案:12. (5分)若a0,b0,且+=,則a3+b3的最小值為參考答案:考點:基本不等式專題:不等式的解法及應(yīng)用分析:由條
8、件利用基本不等式求得 ab4,再利用基本不等式求得a3+b3的最小值解答:解:a0,b0,且且+=,=+2,ab2,當(dāng)且僅當(dāng)a=b=時取等號a3+b3 22=4,當(dāng)且僅當(dāng)a=b=時取等號,a3+b3的最小值為4故答案為:點評:本題主要考查基本不等式在最值中的應(yīng)用,要注意檢驗等號成立條件是否具備,屬于基礎(chǔ)題13. 設(shè)實數(shù)x,y,b滿足,若z2xy的最小值為3, 則實數(shù)b的值為 參考答案:;14. 已知橢圓,為坐標(biāo)原點()橢圓的短軸長為_()若為橢圓上一點,且在軸的右側(cè),為軸上一點,則點的橫坐標(biāo)最小值為_參考答案:();()()由橢圓標(biāo)準(zhǔn)方程可知,故橢圓的短軸長為()點為橢圓上一點,且在軸的右側(cè),
9、設(shè),則,且的斜率為,的斜率,的直線方程為,令解得點的橫坐標(biāo),當(dāng)且僅當(dāng),即時等號成立,故點的橫坐標(biāo)最小值為15. 已知sinx=x+,由sinx=0有無窮多個根;0,2,3,可得:,把這個式子的右邊展開,發(fā)現(xiàn)x3的系統(tǒng)為,即,請由cosx=1+出現(xiàn),類比上述思路與方法,可寫出類似的一個結(jié)論參考答案:+=【考點】類比推理【分析】直接利用類比推理,即可得出結(jié)論【解答】解:由cosx=0有無窮多個根:,可得:cosx=(1)(1),把這個式子的右邊展開,發(fā)現(xiàn)x2的系數(shù)為+=,即+=故答案為+=16. (4分)(2015?上海模擬)設(shè)集合,則AB=參考答案:x|1x2【考點】: 并集及其運算【分析】:
10、集合B為簡單的二次不等式的解集,解出后,利用數(shù)軸與A求并集即可解:B=x|x21=x|1x1,AB=x|1x2,故答案為:x|1x2【點評】: 本題考查集合的基本運算,屬基本題,注意等號17. 已知等差數(shù)列an的前n項和為Sn,且a1+a11=3a64,則則Sn= 。參考答案:44 略三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 在ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且滿足.()求角A的大?。唬ǎ┤?、,求參考答案:略19. 已知函數(shù)f(x)對任意x,yR,都有f(xy)f(x)f(y),且x0時,f(x)0,f(1)2.(1)求證f(x)是奇
11、函數(shù);(2)求f(x)在3,3上的最大值和最小值參考答案:(1)證明令xy0,知f(0)0;再令yx,則f(0)f(x)f(x)0,所以f(x)為奇函數(shù)(2)解任取x1x2,則x2x10,所以f(x2x1)fx2(x1)f(x2)f(x1)f(x2)f(x1)0,所以f(x)為減函數(shù)而f(3)f(21)f(2)f(1)3f(1)6,f(3)f(3)6.所以f(x)maxf(3)6,f(x)minf(3)6.略20. 選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C:(a為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為(1)求圓C的普通方程和
12、直線l的直角坐標(biāo)方程;(2)過點M(1,0)且與直線l平行的直線l1交C于A,B兩點,求點M到A,B兩點的距離之積參考答案:【考點】簡單曲線的極坐標(biāo)方程;參數(shù)方程化成普通方程【分析】(1)利用三種方程的轉(zhuǎn)化方法,求圓C的普通方程和直線l的直角坐標(biāo)方程;(2)利用參數(shù)的幾何意義,即可求點M到A,B兩點的距離之積【解答】解:(1)曲線C:(a為參數(shù)),化為普通方程為:,由,得cossin=2,所以直線l的直角坐標(biāo)方程為xy+2=0(2)直線l1的參數(shù)方程為(t為參數(shù)),代入,化簡得:,得t1t2=1,|MA|?|MB|=|t1t2|=121. 坐標(biāo)系與參數(shù)方程已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合 直線的參數(shù)方程是(為參數(shù)),曲線的極坐標(biāo)方程為()求曲線的直角坐標(biāo)方程;()設(shè)直線與曲線相交于、兩點,求、兩點間的距離參考答案:解:()由得,兩邊同乘得,再由,得曲線的直角坐標(biāo)方程是 5分()將直線參數(shù)方程代入圓方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 今天幼師面試題及答案
- 司法助理考試題及答案
- 廣西模擬地理試題及答案
- 2024年紡織材料研發(fā)方向試題及答案
- 瑞眾保險筆試題及答案
- 廣告拓展市場的成功案例試題及答案
- 定西醫(yī)院招聘試題及答案
- 助理廣告師考試學(xué)習(xí)路徑試題及答案
- 深度解讀紡織品行業(yè)的重要指標(biāo)試題及答案
- 廣告設(shè)計師創(chuàng)新設(shè)計方向試題及答案
- 賀蘭山東麓干紅葡萄酒多酚組分與其抗氧化、抗癌活性的關(guān)聯(lián)性研究
- 第15課+十月革命的勝利與蘇聯(lián)的社會主義實踐【高效備課精研 + 知識精講提升】 高一歷史 課件(中外歷史綱要下)
- 滅火器維修與報廢規(guī)程
- (4.3.1)-3.3我國儲糧生態(tài)區(qū)的分布
- 遼寧盤錦浩業(yè)化工“1.15”泄漏爆炸著火事故警示教育
- 2023年衡陽市水務(wù)投資集團(tuán)有限公司招聘筆試題庫及答案解析
- 110~750kV架空輸電線路設(shè)計規(guī)范方案
- 北師大版五年級數(shù)學(xué)下冊公開課《包裝的學(xué)問》課件
- 車輛采購、維修服務(wù)投標(biāo)方案
- 北師大版英語八年級下冊 Unit 4 Lesson 11 Online Time 課件(30張PPT)
- 淺析商業(yè)綜合體的消防疏散
評論
0/150
提交評論