




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時(shí),輸出的值等于()A.1 B. C. D.2.一個(gè)正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.3.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.4.設(shè)x、y、z是空間中不同的直線(xiàn)或平面,對(duì)下列四種情形:①x、y、z均為直線(xiàn);②x、y是直線(xiàn),z是平面;③z是直線(xiàn),x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②5.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?6.已知函數(shù)滿(mǎn)足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或7.已知函數(shù),若曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.28.已知是過(guò)拋物線(xiàn)焦點(diǎn)的弦,是原點(diǎn),則()A.-2 B.-4 C.3 D.-39.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.10.已知集合,,則A. B. C. D.11.已知向量與的夾角為,,,則()A. B.0 C.0或 D.12.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn),點(diǎn)為拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)分別為,則線(xiàn)段長(zhǎng)度的取值范圍為_(kāi)_________.14.的展開(kāi)式中,的系數(shù)是______.15.已知雙曲線(xiàn)的一條漸近線(xiàn)經(jīng)過(guò)點(diǎn),則該雙曲線(xiàn)的離心率為_(kāi)______.16.某大學(xué)、、、四個(gè)不同的專(zhuān)業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專(zhuān)業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專(zhuān)業(yè)應(yīng)抽取_________人.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)作直線(xiàn)的垂線(xiàn)(當(dāng)、重合時(shí),直線(xiàn)約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線(xiàn)的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.18.(12分)已知點(diǎn),且,滿(mǎn)足條件的點(diǎn)的軌跡為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)是否存在過(guò)點(diǎn)的直線(xiàn),直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),直線(xiàn)與軸分別交于兩點(diǎn),使得?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.20.(12分)平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的極坐標(biāo)方程為,點(diǎn).(1)求曲線(xiàn)的極坐標(biāo)方程與直線(xiàn)的直角坐標(biāo)方程;(2)若直線(xiàn)與曲線(xiàn)交于點(diǎn),曲線(xiàn)與曲線(xiàn)交于點(diǎn),求的面積.21.(12分)設(shè)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(xiàn)(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿(mǎn)足?并說(shuō)明理由.22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)程序圖,當(dāng)x<0時(shí)結(jié)束對(duì)x的計(jì)算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時(shí)x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點(diǎn)睛】本題考查程序框圖,是基礎(chǔ)題.2、D【解析】
試題分析:如圖所示,截去部分是正方體的一個(gè)角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.3、B【解析】
根據(jù)函數(shù)單調(diào)性逐項(xiàng)判斷即可【詳解】對(duì)A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯(cuò)誤;對(duì)B,因?yàn)閥=cx為增函數(shù),且a>b,所以ca>cb,正確對(duì)C,因?yàn)閥=xc為增函數(shù),故,錯(cuò)誤;對(duì)D,因?yàn)樵跒闇p函數(shù),故,錯(cuò)誤故選B.【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.4、C【解析】
①舉反例,如直線(xiàn)x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線(xiàn)平行判斷.③用垂直于同一直線(xiàn)的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線(xiàn)x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€(xiàn)平行,正確;③因?yàn)榇怪庇谕恢本€(xiàn)的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線(xiàn)面關(guān)系,選擇題一般可通過(guò)特殊值法進(jìn)行排除,屬于簡(jiǎn)單題目.5、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.6、C【解析】
簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱(chēng),然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱(chēng)性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱(chēng)當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱(chēng),所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱(chēng)性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.7、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線(xiàn)方程通過(guò)f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線(xiàn)方程的求法,考查計(jì)算能力.8、D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),,故.易知直線(xiàn)斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線(xiàn)中的向量的數(shù)量積,設(shè)直線(xiàn)為可以簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵.9、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.10、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類(lèi)問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.11、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長(zhǎng)平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)與圓的位置關(guān)系的應(yīng)用,考查拋物線(xiàn)上的動(dòng)點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.14、【解析】
先將原式展開(kāi)成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開(kāi)再利用排列組合思想解決,屬于基礎(chǔ)題.15、【解析】
根據(jù)雙曲線(xiàn)方程,可得漸近線(xiàn)方程,結(jié)合題意可表示,再由雙曲線(xiàn)a,b,c關(guān)系表示,最后結(jié)合雙曲線(xiàn)離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線(xiàn)為,所以該雙曲線(xiàn)的漸近線(xiàn)方程為.又因?yàn)槠湟粭l漸近線(xiàn)經(jīng)過(guò)點(diǎn),即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線(xiàn)的漸近線(xiàn)構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.16、【解析】
求出專(zhuān)業(yè)人數(shù)在、、、四個(gè)專(zhuān)業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專(zhuān)業(yè)人數(shù)的比例為,故專(zhuān)業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線(xiàn):,,圓的極坐標(biāo)方程為,聯(lián)立兩個(gè)方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線(xiàn):,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時(shí),,的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.18、(1)(2)存在,或.【解析】
(1)由得看成到兩定點(diǎn)的和為定值,滿(mǎn)足橢圓定義,用定義可解曲線(xiàn)的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)點(diǎn)斜式方程,由,可得,再直線(xiàn)與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線(xiàn)的方程為;假設(shè)存在過(guò)點(diǎn)的直線(xiàn)l符合題意.當(dāng)直線(xiàn)的斜率不存在,設(shè)方程為,可得為短軸的兩個(gè)端點(diǎn),不成立;當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線(xiàn)與橢圓相交,,則化為,即為,解得,所以存在直線(xiàn)符合題意,且方程為或.【點(diǎn)睛】本題考查求軌跡方程及直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系問(wèn)題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動(dòng)點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線(xiàn)定義判斷是何種曲線(xiàn),再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線(xiàn)的問(wèn)題時(shí),可依據(jù)條件尋找適合條件的直線(xiàn)方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.19、(1)(2)【解析】
(1)用等比數(shù)列的首項(xiàng)和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯(cuò)位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和等差中項(xiàng)的概念以及錯(cuò)位相減法求和,考查運(yùn)算能力,屬中檔題.20、(1).(2)【解析】
(1)根據(jù)題意代入公式化簡(jiǎn)即可得到.(2)聯(lián)立極坐標(biāo)方程通過(guò)極坐標(biāo)的幾何意義求解,再求點(diǎn)到直線(xiàn)的距離即可算出三角形面積.【詳解】解:(1)曲線(xiàn),即.∴.曲線(xiàn)的極坐標(biāo)方程為.直線(xiàn)的極坐標(biāo)方程為,即,∴直線(xiàn)的直角坐標(biāo)方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點(diǎn)到直線(xiàn)的距離為,∴的面積為.【點(diǎn)睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目./r/
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲連鎖店特許經(jīng)營(yíng)合同
- 機(jī)車(chē)美容改裝方案
- 水電要素保障措施方案
- 公園水體應(yīng)急預(yù)案方案
- 機(jī)關(guān)布書(shū)制作方案
- 財(cái)務(wù)主管競(jìng)業(yè)禁止及保密協(xié)議書(shū)
- 寵物超市創(chuàng)業(yè)方案書(shū)
- 農(nóng)村土地綜合整治耕地指標(biāo)交易協(xié)議
- 伙食閉環(huán)管理方案(3篇)
- 常州商鋪二手房交易合同模板
- 《大疆科技股利政策現(xiàn)狀、存在的問(wèn)題及完善對(duì)策(論文)8800字》
- OptiSystem-設(shè)計(jì)光纖放大器和光纖激光器-訊稷
- 初中心理健康教育活動(dòng)方案(7篇)
- 《中華人民共和國(guó)監(jiān)察法實(shí)施條例》測(cè)試題
- 繁峙縣茶坊礦業(yè)開(kāi)發(fā)有限公司3萬(wàn)t-a金礦開(kāi)采項(xiàng)目?環(huán)評(píng)報(bào)告
- 2022年汽車(chē)維修工高級(jí)工(三級(jí))理論題庫(kù)-單選題庫(kù)
- 攝像頭圖像測(cè)試(以Imatest等為主要工具)項(xiàng)目及簡(jiǎn)介課件
- 新教材北師大版高中英語(yǔ)必修第二冊(cè)全冊(cè)重點(diǎn)單詞短語(yǔ)句型歸納總結(jié)
- POCT血糖測(cè)定授權(quán)表
- 深藍(lán)科技風(fēng)智能醫(yī)療衛(wèi)生系統(tǒng)模板課件整理
- 消防設(shè)施操作員報(bào)名承諾書(shū)
評(píng)論
0/150
提交評(píng)論