




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.2.若,滿足約束條件,則的取值范圍為()A. B. C. D.3.點(diǎn)為不等式組所表示的平面區(qū)域上的動(dòng)點(diǎn),則的取值范圍是()A. B. C. D.4.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.5.將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知三棱錐且平面,其外接球體積為()A. B. C. D.7.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.8.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.9.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.10.已知函數(shù),若,則的值等于()A. B. C. D.11.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.12.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,則______.14.(5分)已知,且,則的值是____________.15.已知函數(shù),若關(guān)于x的方程有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是_______________.16.驗(yàn)證碼就是將一串隨機(jī)產(chǎn)生的數(shù)字或符號(hào),生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識(shí)別其中的驗(yàn)證碼信息,輸入表單提交網(wǎng)站驗(yàn)證,驗(yàn)證成功后才能使用某項(xiàng)功能.很多網(wǎng)站利用驗(yàn)證碼技術(shù)來(lái)防止惡意登錄,以提升網(wǎng)絡(luò)安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗(yàn)證碼由0,1,2,…,9中的五個(gè)數(shù)字隨機(jī)組成.將中間數(shù)字最大,然后向兩邊對(duì)稱遞減的驗(yàn)證碼稱為“鐘型驗(yàn)證碼”(例如:如14532,12543),已知某人收到了一個(gè)“鐘型驗(yàn)證碼”,則該驗(yàn)證碼的中間數(shù)字是7的概率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.18.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.19.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.20.(12分)已知直線過(guò)橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過(guò)原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.21.(12分)已知橢圓:(),點(diǎn)是的左頂點(diǎn),點(diǎn)為上一點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)過(guò)點(diǎn)的直線與的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出直線的方程;若不存在,說(shuō)明理由.22.(10分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.2.B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫(huà)出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最小值-5;經(jīng)過(guò)點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.3.B【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動(dòng)點(diǎn)到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.4.C【解析】
利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).5.A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達(dá)式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度,得到的圖象對(duì)應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當(dāng)時(shí),.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查充分不必要條件的判斷,同時(shí)也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力與推理能力,屬于中等題.6.A【解析】
由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.7.C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.8.D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.9.C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).10.B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)11.C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.12.A【解析】
畫(huà)出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫(huà)出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過(guò)點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點(diǎn)睛】本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫(huà)出不等式組表示的可行域,利用“一畫(huà)、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.14.【解析】
由于,且,則,得,則.15.【解析】
畫(huà)出函數(shù)的圖象,再畫(huà)的圖象,求出一個(gè)交點(diǎn)時(shí)的的值,然后平行移動(dòng)可得有兩個(gè)交點(diǎn)時(shí)的的范圍.【詳解】函數(shù)的圖象如圖所示:因?yàn)榉匠逃星抑挥袃蓚€(gè)不相等的實(shí)數(shù)根,所以圖象與直線有且只有兩個(gè)交點(diǎn)即可,當(dāng)過(guò)點(diǎn)時(shí)兩個(gè)函數(shù)有一個(gè)交點(diǎn),即時(shí),與函數(shù)有一個(gè)交點(diǎn),由圖象可知,直線向下平移后有兩個(gè)交點(diǎn),可得,故答案為:.【點(diǎn)睛】本題主要考查了方程的跟與函數(shù)的圖象交點(diǎn)的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.16.【解析】
首先判斷出中間號(hào)碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計(jì)算公式計(jì)算出所求概率.【詳解】根據(jù)“鐘型驗(yàn)證碼”中間數(shù)字最大,然后向兩邊對(duì)稱遞減,所以中間的數(shù)字可能是.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.所以該驗(yàn)證碼的中間數(shù)字是7的概率為.故答案為:【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,考查分類加法計(jì)數(shù)原理、分類乘法計(jì)數(shù)原理的應(yīng)用,考查運(yùn)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線與所成角的余弦值為,得點(diǎn)M的坐標(biāo),從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè),則,,得,,而,設(shè)平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點(diǎn)睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時(shí)要注意空間思維能力的培養(yǎng)和向量法的合理運(yùn)用,屬于中檔題.18.(1)見(jiàn)解析(2)【解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積.【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑危詾榈闹悬c(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫妫云矫妫?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑?,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過(guò)作直線的垂線段,在所有垂線段中長(zhǎng)度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.【點(diǎn)睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵.19.(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過(guò)圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過(guò)圓的圓心.因此,是圓的直徑,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.20.(1)(2)【解析】
(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長(zhǎng)公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理?yè)Q元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因?yàn)榈街本€的距離分別是,由于直線l
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年土地規(guī)劃專業(yè)碩士入學(xué)考試試題及答案
- 2025年新媒體傳播與技術(shù)應(yīng)用試題及答案
- 2025年英語(yǔ)翻譯與口譯專業(yè)考試試卷及答案
- 外賣(mài)平臺(tái)配送員工作紀(jì)律與獎(jiǎng)懲制度合同
- 線上兼職稅前稅后薪資結(jié)算與稅務(wù)規(guī)范協(xié)議
- 影視企業(yè)事務(wù)兼聘員工服務(wù)合同
- 住宅小區(qū)車位租賃合同(含停車管理及月租優(yōu)惠)
- 抖音與火花元宇宙平臺(tái)跨界合作推廣協(xié)議
- 網(wǎng)絡(luò)直播平臺(tái)主播形象權(quán)保護(hù)與數(shù)據(jù)安全保密補(bǔ)充協(xié)議
- 游戲道具市場(chǎng)調(diào)研與品牌推廣合作協(xié)議
- 國(guó)際貿(mào)易居間協(xié)議樣本
- 2024愛(ài)德華EDWARDS消防報(bào)警系統(tǒng)產(chǎn)品技術(shù)手冊(cè)
- 康復(fù)醫(yī)療評(píng)定課件
- 預(yù)制板粘貼碳纖維加固計(jì)算表格
- 2025年浙江省金融控股有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年江西江投資本有限公司招聘筆試參考題庫(kù)含答案解析
- 城市供熱人工費(fèi)施工合同
- 三個(gè)責(zé)任制自查(2篇)
- 嵌入式系統(tǒng)的應(yīng)用與創(chuàng)新
- 普通飲片車間共線生產(chǎn)風(fēng)險(xiǎn)評(píng)估報(bào)告
- 三年制中職旅游管理課程標(biāo)準(zhǔn) 《旅游心理學(xué)》課程標(biāo)準(zhǔn)-中職
評(píng)論
0/150
提交評(píng)論