




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022學(xué)年遼寧省葫蘆島市第六高級(jí)中學(xué)高三數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),,則(
)A.
B.
C.
D.參考答案:A考點(diǎn):函數(shù)的周期性、奇偶性.2.已知為平面上的定點(diǎn),、、是平面上不共線的三點(diǎn),若,則DABC是(
)(A)以AB為底邊的等腰三角形 (B)以BC為底邊的等腰三角形(C)以AB為斜邊的直角三角形 (D)以BC為斜邊的直角三角形參考答案:略3.(x-)12展開式中的常數(shù)項(xiàng)為(A)-1320(B)1320(C)-220
(D)220參考答案:【解析】本題考查二項(xiàng)式定理及其應(yīng)用答案:C4.設(shè)m,n是兩條不同直線,α,β是兩個(gè)不同的平面,下列命題正確的是()A.m∥α,n∥β且α∥β,則m∥n B.m⊥α,n⊥β且α⊥β,則m⊥nC.m⊥α,n?β,m⊥n,則α⊥β D.m?α,n?α,m∥β,n∥β,則α∥β參考答案:B【考點(diǎn)】平面與平面垂直的性質(zhì).【專題】證明題;空間位置關(guān)系與距離.【分析】對(duì)于A、由面面平行的判定定理,得A是假命題對(duì)于B、由m⊥α,n⊥β且α⊥β,可知m與n不平行,借助于直線平移先得到一個(gè)與m或n都平行的平面,則所得平面與α、β都相交,根據(jù)m與n所成角與二面角平面角互補(bǔ)的結(jié)論.對(duì)于C、通過直線與平面平行的判定定理以及平面與平面平行的性質(zhì)定理,判斷正誤即可;對(duì)于D、利用平面與平面平行的判定定理推出結(jié)果即可.【解答】解:對(duì)于A,若m∥α,n∥β且α∥β,說明m、n是分別在平行平面內(nèi)的直線,它們的位置關(guān)系應(yīng)該是平行或異面,故A錯(cuò);對(duì)于B,由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,通過平移使得m與n相交,且設(shè)m與n確定的平面為γ,則γ與α和β的交線所成的角即為α與β所成的角,因?yàn)棣痢挺?,所以m與n所成的角為90°,故命題B正確.對(duì)于C,根據(jù)面面垂直的性質(zhì),可知m⊥α,n?β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正確;對(duì)于D,若“m?α,n?α,m∥β,n∥β”,則“α∥β”也可能α∩β=l,所以D不成立.故選B.【點(diǎn)評(píng)】本題考查直線與平面平行與垂直,面面垂直的性質(zhì)和判斷的應(yīng)用,考查邏輯推理能力,基本知識(shí)的應(yīng)用題目.5.執(zhí)行如圖所示的程序框圖,則輸出i的值為()A.5 B.6 C.7 D.8參考答案:C【考點(diǎn)】EF:程序框圖.【分析】模擬執(zhí)行程序,依次寫出每次循環(huán)得到的i,S的值,當(dāng)S=21時(shí),滿足條件S<28,退出循環(huán),輸出i的值為7,從而得解.【解答】解:模擬執(zhí)行程序,可得:i=10,S=55S=45不滿足條件S<28,執(zhí)行循環(huán)體,i=9,S=36不滿足條件S<28,執(zhí)行循環(huán)體,i=8,S=28不滿足條件S<28,執(zhí)行循環(huán)體,i=7,S=21滿足條件S<28,退出循環(huán),輸出i的值為7.故選:C.【點(diǎn)評(píng)】本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解答本題的關(guān)鍵,屬于基礎(chǔ)題.6.執(zhí)行如圖所示的程序框圖,則輸出的n值為(
)A.9
B.10
C.11
D.12參考答案:C執(zhí)行程序框圖過程如下:第一次循環(huán),是;第二次循環(huán),是;第三次循環(huán),是;…第九次循環(huán),是;第十次循環(huán),否,結(jié)束循環(huán).輸出,故選C.
7.已知矩形ABCD中,,,E,F(xiàn)分別是AB,CD上兩動(dòng)點(diǎn),且,把四邊形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的幾何體的體積最大,則該幾何體外接球的體積為(
)A.28π
B.
C.32π
D.參考答案:A8.執(zhí)行如圖所示的流程圖,輸出的S的值為(
)A.
B.
C.
D.
參考答案:B9.的展開式的常數(shù)項(xiàng)是(A)48
(B)﹣48
(C)112
(D)﹣112參考答案:B10.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c成等比數(shù)列,且公比為q,則q+的取值范圍是()A.(0,+∞) B. (0,+1) C. (﹣1,+∞) D. (﹣1,+1)參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.若直線與圓相交于P、Q兩點(diǎn),且(其中O為原點(diǎn)),則k的值為_______.參考答案:略12.若不等式對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍為__________.參考答案:(0,2)13.(理)若函數(shù)的值域?yàn)?則實(shí)數(shù)的取值范圍為
. 參考答案:
14.已知,則函數(shù)z=3x﹣y的最小值為.參考答案:【考點(diǎn)】簡(jiǎn)單線性規(guī)劃.【分析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【解答】解:由約束條件作出可行域如圖,聯(lián)立,解得A(﹣,1).化目標(biāo)函數(shù)z=3x﹣y為y=3x﹣z,由圖可知,當(dāng)直線y=3x﹣z過A時(shí),直線在y軸上的截距最大,z有最小值﹣.故答案為:﹣.15.閱讀如圖所示的程序框圖,若輸入,則輸出的k值為____________.參考答案:由程序框圖可知輸出的k為.16.若在等腰Rt△ABC中,||=||=2,則?=
.參考答案:﹣4【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算.【分析】由向量的加減運(yùn)算和向量的垂直的條件,以及向量的平方即為模的平方,即可得到.【解答】解:在等腰Rt△ABC中,||=||=2,且AB⊥AC,即有?=?(﹣)=?﹣=0﹣22=﹣4.故答案為:﹣4.17.已知向量則k的值為
。參考答案:19略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知△ABC的邊AB所在直線的方程為x﹣3y﹣6=0,M(2,0)滿足,點(diǎn)T(﹣1,1)在AC所在直線上且.
(1)求△ABC外接圓的方程;(2)一動(dòng)圓過點(diǎn)N(﹣2,0),且與△ABC的外接圓外切,求此動(dòng)圓圓心的軌跡方程Γ;(3)過點(diǎn)A斜率為k的直線與曲線Γ交于相異的P,Q兩點(diǎn),滿足,求k的取值范圍.參考答案:考點(diǎn):圓與圓錐曲線的綜合;平面向量的綜合題;圓的標(biāo)準(zhǔn)方程.專題:綜合題;壓軸題.分析:(1)由,知AT⊥AB,從而直線AC的斜率為﹣3.所以AC邊所在直線的方程為3x+y+2=0.由得點(diǎn)A的坐標(biāo)為(0,﹣2),由此能求出△ABC外接圓的方程.(2)設(shè)動(dòng)圓圓心為P,因?yàn)閯?dòng)圓過點(diǎn)N,且與△ABC外接圓M外切,所以,即.故點(diǎn)P的軌跡是以M,N為焦點(diǎn),實(shí)軸長為,半焦距c=2的雙曲線的左支.由此能求出動(dòng)圓圓心的軌跡方程.(3)PQ直線方程為:y=kx﹣2,設(shè)P(x1,y1),Q(x2,y2),由得(1﹣k2)x2+4kx﹣6=0(x<0),由此能夠得到k的取值范圍.解答:解:(1)∵∴AT⊥AB,從而直線AC的斜率為﹣3.所以AC邊所在直線的方程為y﹣1=﹣3(x+1).即3x+y+2=0.由得點(diǎn)A的坐標(biāo)為(0,﹣2),又.所以△ABC外接圓的方程為:(x﹣2)2+y2=8.(2)設(shè)動(dòng)圓圓心為P,因?yàn)閯?dòng)圓過點(diǎn)N,且與△ABC外接圓M外切,所以,即.故點(diǎn)P的軌跡是以M,N為焦點(diǎn),實(shí)軸長為,半焦距c=2的雙曲線的左支.從而動(dòng)圓圓心的軌跡方程Γ為.(3)PQ直線方程為:y=kx﹣2,設(shè)P(x1,y1),Q(x2,y2)由得(1﹣k2)x2+4kx﹣6=0(x<0)∴解得:故k的取值范圍為點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.19.(本小題滿分12分)已知值域?yàn)閇-1,+)的二次函數(shù)滿足,且方程的兩個(gè)實(shí)根,滿足。(1)求的表達(dá)式;(2)函數(shù)在區(qū)間[-1,2]內(nèi)的最大值為,最小值為,求實(shí)數(shù)的取值范圍。參考答案:20.某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:,,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.(Ⅰ)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);(Ⅱ)從閱讀時(shí)間不足10個(gè)小時(shí)樣本學(xué)生中隨機(jī)抽取3人,并用表示其中初中生的人數(shù),求的分布列和數(shù)學(xué)期望.參考答案:(Ⅰ),閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù)約有人(Ⅱ)見解析【分析】(Ⅰ)由頻率分布直方圖中,所有矩形面積之和為,求出的值,并從頻率分布直方圖求出閱讀時(shí)間不小于個(gè)小時(shí)的學(xué)生所占的頻率,利用總?cè)萘砍艘栽擃l率可得出閱讀時(shí)間不小于個(gè)小時(shí)的學(xué)生數(shù);(Ⅱ)先計(jì)算出閱讀時(shí)間不足個(gè)小時(shí)的樣本中初中生和高中生的人數(shù),得出隨機(jī)變量的取值為、、,再利用超幾何的計(jì)算公式,可列出隨機(jī)變量的分布列,并計(jì)算出隨機(jī)變量的數(shù)學(xué)期望?!驹斀狻浚á瘢┙猓?。由分層抽樣,知抽取的初中生有60名,高中生有40名.
因?yàn)槌踔猩?,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生頻率為,所以所有的初中生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生約有人,同理,高中生中,閱讀時(shí)間不小于30個(gè)小時(shí)學(xué)生頻率為,學(xué)生人數(shù)約有人.所以該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù)約有人;(Ⅱ)解:初中生中,閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生頻率為,樣本人數(shù)為人。同理,高中生中,閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生樣本人數(shù)為人。故的可能取值為1,2,3.
則,
,。所以的分布列為:123
所以?!军c(diǎn)睛】本題考查頻率分布直方圖以及超幾何分布的分布列和數(shù)學(xué)期望,關(guān)鍵是要弄清楚隨機(jī)變量所服從的分布列,再利用相關(guān)公式求解。
21.如圖,F(xiàn)是拋物線的焦點(diǎn),A、B、M是拋物線上三點(diǎn)(M在第一象限),直線AB交x軸于點(diǎn)N(N在F的右邊),四邊形FMNA是平行四邊形,記,的面積分別為.(1)若,求點(diǎn)M的坐標(biāo)(用含有p的代數(shù)式表示);(2)若,求直線OM的斜率(O為坐標(biāo)原點(diǎn)).參考答案:(1)(2)【分析】(1)根據(jù)拋物線的定義,結(jié)合拋物線方程,求得M點(diǎn)的坐標(biāo).(2)設(shè),根據(jù)平行四邊形的對(duì)稱性求得兩點(diǎn)的坐標(biāo),設(shè)出點(diǎn)坐標(biāo),利用得到,由列方程,解方程求得M的坐標(biāo),由此求得直線的斜率.【詳解】(1)設(shè),則,所以,所以所以(2)設(shè),因?yàn)槭瞧叫兴倪呅?,所以?duì)角線互相平分,所以兩點(diǎn)的縱坐標(biāo)互為相反數(shù),所以,設(shè),因?yàn)椋运砸驗(yàn)?,所以,所以又,解得,所以【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,考查三角形面積公式,考查平行四邊形的性質(zhì),考查斜率公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.22.(本小題滿分14分)如圖,在軸上方有一段曲線弧,其端點(diǎn)、在軸上(但不屬于),對(duì)上任一點(diǎn)及點(diǎn),,滿足:.直線,分別交直線于,兩點(diǎn).(1)求曲線弧的方程;(2)設(shè),兩點(diǎn)的縱坐標(biāo)分別為,求證:;(3)求的最小值.
參考答案:解:(1)由橢圓的定義,曲線是以,為焦點(diǎn)的半橢圓,.
……………2分∴的方程為.
…………4分(注:不寫區(qū)間“”扣1分)(2)解法1:由(1)知,曲線的方程為,設(shè),
則有,即
……①…………………6分又,,從而直線的方程為
AP:;
BP:.………………7分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 組織部門面試題目及答案
- 有趣的靈魂考試題及答案
- 2025年現(xiàn)代企業(yè)運(yùn)營與管理考試題及答案
- 景觀英文面試題目及答案
- 家政職稱考試題及答案
- 文秘公務(wù)員試題及答案
- 2025年健康管理師職業(yè)資格考試題及答案
- jdbc考試題及答案
- 國貿(mào)試題及答案
- 企業(yè)通訊工具租賃與使用協(xié)議
- 2024秋期國家開放大學(xué)《可編程控制器應(yīng)用實(shí)訓(xùn)》一平臺(tái)在線形考(形成任務(wù)1)試題及答案
- 古詩詞誦讀《臨安春雨初霽》課件+2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修下冊(cè)
- 護(hù)理核心制度搶救制度
- 廣東省東莞市(2024年-2025年小學(xué)三年級(jí)語文)人教版期末考試(下學(xué)期)試卷(含答案)
- 電子化學(xué)品工廠設(shè)計(jì)規(guī)范(征求意見稿)
- 2024年西北工業(yè)大學(xué)附中丘成桐少年班初試數(shù)學(xué)試題真題(含答案詳解)
- 初中物理神奇的電磁波+物理教科版九年級(jí)下冊(cè)
- GB/T 718-2024鑄造用生鐵
- 2024-2029年中國無溶劑復(fù)合機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 汽車維修項(xiàng)目實(shí)施方案
- 競(jìng)技體育人才隊(duì)伍建設(shè)方案
評(píng)論
0/150
提交評(píng)論