




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省大同市天鎮(zhèn)縣第一中學高一數(shù)學理下學期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.的值是(
) A.
B.
C.
D.
2.已知f(x)參考答案:D2.若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù).給出下列三個函數(shù):,,,則().A.,,為“同形”函數(shù)B.,為“同形”函數(shù),且它們與不為“同形”函數(shù)C.,為“同形”函數(shù),且它們與不為“同形”函數(shù)D.,為“同形”函數(shù),且它們與不為“同形”函數(shù)參考答案:B∵,,,,則,為“同形”函數(shù),且它們與不為“同形”函數(shù),選.3.正數(shù),滿足,則的最小值為(
)A.
B.
C.
D.參考答案:D4.(5分)函數(shù)f(x)=2x+x﹣2的零點所在的一個區(qū)間是() A. (﹣2,﹣1) B. (﹣1,0) C. (0,1) D. (1,2)參考答案:C考點: 函數(shù)零點的判定定理.專題: 計算題.分析: 利用函數(shù)的零點判定定理,先判斷函數(shù)的單調性,然后判斷端點值的符合關系.解答: ∵f(x)=2x+x﹣2在R上單調遞增又∵f(0)=﹣1<0,f(1)=1>0由函數(shù)的零點判定定理可知,函數(shù)的零點所在的一個區(qū)間是(0,1)故選C點評: 本題主要考查函數(shù)零點區(qū)間的判斷,判斷的主要方法是利用根的存在性定理,判斷函數(shù)在給定區(qū)間端點處的符號是否相反.5.若關于x的方程有實根,則實數(shù)a的取值范圍是(
)A.(-∞,1]
B.(0,1]
C.[1,2]
D.[1,+∞?)參考答案:A,,,,實數(shù)的取值范圍是,故選A.
6.函數(shù)的定義域為{0,1,2,3},那么其值域為
(
)A.B.{0,1,2,3}
C.
D.參考答案:A略7.已知函數(shù)f(x)對任意實數(shù)x,y恒有且當,.給出下列四個結論:①f(0)=0;
②f(x)為偶函數(shù);③f(x)為R上減函數(shù);
④f(x)為R上增函數(shù).其中正確的結論是()A.①③ B.①④ C.②③ D.②④參考答案:A8.在△ABC中,tanA,tanB,tanC依次成等差數(shù)列,則B的取值范圍是()A.(0,]∪(,] B.(0,]∪(,] C.[) D.[,)參考答案:D【考點】8F:等差數(shù)列的性質;GH:同角三角函數(shù)基本關系的運用;GR:兩角和與差的正切函數(shù).【分析】由已知先求出2tanB=tanA+tanC>0,tanAtanC=3.再由(2tanB)2=(tanA+tanC)2=tan2A+tan2C+2tanAtanC≥4tanAtanC=12,求出,從而得到B的取值范圍.【解答】解:由已知得2tanB=tanA+tanC>0(顯然tanB≠0,若tanB<0,因為tanA>0且tanC>0,tanA+tanC>0,這與tanB<0矛盾),又tanB=﹣tan(A+C)=,所以tanAtanC=3.又(2tanB)2=(tanA+tanC)2=tan2A+tan2C+2tanAtanC≥4tanAtanC=12,因此tan2B≥3,又tanB>0,所以,,即B的取值范圍是[),故選D.9.已知全集,集合,,那么集合等于(
)
A.
B.
C.D.參考答案:C10.(5分)設a=2﹣3,,,則() A. a>b>c B. a<b<c C. b<a<c D. b<c<a參考答案:C考點: 對數(shù)值大小的比較.專題: 函數(shù)的性質及應用.分析: 利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性即可得出.解答: ∵,,.∴b<a<c.故選:C.點評: 本題考查了指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,屬于基礎題.二、填空題:本大題共7小題,每小題4分,共28分11.有三條棱互相平行的五面體,其三視圖如圖所示,則該五面體外接球的體積為__________.參考答案:【分析】先作出三視圖對應的原幾何體,再求幾何體外接球的半徑,再求幾何體外接球的體積.【詳解】由題得幾何體原圖是如圖所示的直三棱柱ABC-EFG,D,H分別是AB,EF中點,O點時球心,所以OH=,,所以,所以幾何體外接球的體積為.故答案為:【點睛】本題主要考查三視圖還原幾何體,考查幾何體外接球的體積的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.12.已知,則____________.參考答案:略13.已知,,則3+4=
.
參考答案:略14.已知△ABC中,,且,則△ABC面積的最大值為__________.參考答案:【分析】先利用正弦定理求出c=2,分析得到當點在的垂直平分線上時,邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當點在的垂直平分線上時,邊上的高最大,的面積最大,此時.由余弦定理知,,即,故面積的最大值為.故答案為:【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.15.定義集合運算:設,,則集合的所有元素之和為
參考答案:6
略16.已知矩形ABCD(AB>AD)的周長為12,若將它關于對角線AC折起后,使邊AB與CD交于點P(如圖所示),則△ADP面積的最大值為
.參考答案:27﹣18【考點】基本不等式.【分析】設AB=x,則AD=6﹣x,利用勾股定理得到PD,再根據(jù)三角形的面積公式和基本不等式的性質,即可求出.【解答】解∵設AB=x,則AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣,∵AB>AD,∴3<x<6,∴△ADP的面積S=AD?DP=(6﹣x)(6﹣)=27﹣3(x+)≤27﹣3×2=27﹣18,當且僅當x=3時取等號,∴△ADP面積的最大值為27﹣18,故答案為:27﹣1817.已知集合A={x|ax+1=0},B={﹣1,1},若A∩B=A,則實數(shù)a的所有可能取值的集合為
.參考答案:{﹣1,0,1}【考點】集合的包含關系判斷及應用.【分析】根據(jù)題中條件:“A∩B=A”,得到B是A的子集,故集合B可能是?或B={﹣1},或{1},由此得出方程ax+1=0無解或只有一個解x=1或x=﹣1.從而得出a的值即可【解答】解:由于A∩B=A,∴B=?或B={﹣1},或{1},∴a=0或a=1或a=﹣1,∴實數(shù)a的所有可能取值的集合為{﹣1,0,1}故答案為:{﹣1,0,1}三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知函數(shù)的一系列對應值如下表:(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;(2)根據(jù)(1)的結果,若函數(shù)周期為,當時,方程恰有兩個不同的解,求實數(shù)的取值范圍.參考答案:略19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大?。唬?)若,,求a的值.參考答案:(1)(2)分析:(1)根據(jù)正弦定理,可將等式中的邊轉化為角,即,再根據(jù)輔助角公式化簡得到一個角的三角函數(shù)式.。根據(jù)三角形中角的取值范圍,確定角A的大小。(2)根據(jù)三角形的面積公式,可以得到bc的值;然后利用余弦定理求出的值。詳解:(1)由正弦定理得,由于,所以,所以,則.因為,所以,所以,所以.(2)由可得,所以.由余弦定理得,所以.點睛:本題主要考查了正余弦定理的綜合應用,涉及三角形的面積公式、邊角轉化和輔助角公式化簡求值等,要注意根據(jù)三角形中角的范圍縮小角的取值,依據(jù)所給條件的不同選擇正弦定理或余弦定理求解。20.設,其中,如果
,求實數(shù)的取值范圍。參考答案:解:由,而,當,即時,,符合;當,即時,,符合;當,即時,中有兩個元素,而;∴得
∴。略21.(本小題滿分14分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.參考答案:(1)設等差數(shù)列的公差為,則由條件得
,…………………4分解得, ………6分所以通項公式,即.…7分(2)令,解得,
………………8分∴當時,;當時,,……………9分∴………………10分
…………12分.………………14分22.(12分)函數(shù)一段圖象如圖所示。(1)分別求出并
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電設備維修技術 第3版 課件 第六章-典型機電設備的維修
- 單片機課程設計心得體會模版
- 湖北省襄陽市宜城市五校2024-2025學年七年級下學期期中學業(yè)質量監(jiān)測歷史試卷(含答案)
- 北京版英語Unit 4 Where is my shirt《Lesson 13》課件
- 公司采購員年終總結模版
- 2023年雷雨知識競賽題目及答案
- 山西科技學院《光學基礎實驗(二)》2023-2024學年第二學期期末試卷
- 市場營銷營銷策略知識點習題
- 打樁工程分包合同
- 江西省永新縣達標名校2025年初三下學期七調考試語文試題含解析
- (統(tǒng)編2024版)語文一年級下冊第三單元解析+任務目標+大單元教學設計
- 食品質量與安全檢測技術作業(yè)指導書
- 內河船舶船員基本安全知識考試題庫300題(含答案)
- 校長論壇交流發(fā)言:引領教師專業(yè)成長的核心能力點燃教育變革的引擎
- 2024 年普通高等學校招生全國統(tǒng)一考試新課標 I 卷-數(shù)學試卷-全國
- 《春夏中醫(yī)養(yǎng)生》課件
- 2024年02月北京2024年北京銀行總行社會招考(217)筆試歷年參考題庫附帶答案詳解
- 《高速公路設計審查技術指南》
- 燃氣崗位安全培訓
- 《pmp項目管理培訓》課件
- 機械設計基礎B知到智慧樹章節(jié)測試課后答案2024年秋哈爾濱工程大學
評論
0/150
提交評論