吉林省德惠市2022-2023學(xué)年中考數(shù)學(xué)四模試卷含解析_第1頁
吉林省德惠市2022-2023學(xué)年中考數(shù)學(xué)四模試卷含解析_第2頁
吉林省德惠市2022-2023學(xué)年中考數(shù)學(xué)四模試卷含解析_第3頁
吉林省德惠市2022-2023學(xué)年中考數(shù)學(xué)四模試卷含解析_第4頁
吉林省德惠市2022-2023學(xué)年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.2.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當(dāng)k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱3.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h4.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣365.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°6.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分7.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.8.計算(﹣5)﹣(﹣3)的結(jié)果等于()A.﹣8B.8C.﹣2D.29.若2<<3,則a的值可以是()A.﹣7 B. C. D.1210.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.11.下列說法錯誤的是()A.必然事件的概率為1B.?dāng)?shù)據(jù)1、2、2、3的平均數(shù)是2C.?dāng)?shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎12.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.14.若不等式(a﹣3)x>1的解集為,則a的取值范圍是_____.15.一組“數(shù)值轉(zhuǎn)換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結(jié)果為106,要使輸出的結(jié)果為127,則輸入的最小正整數(shù)是__________.16.某校園學(xué)子餐廳把WIFI密碼做成了數(shù)學(xué)題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學(xué)子餐廳的網(wǎng)絡(luò),那么他輸入的密碼是______.17.一組數(shù)據(jù)4,3,5,x,4,5的眾數(shù)和中位數(shù)都是4,則x=_____.18.已知是銳角,那么cos=_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.20.(6分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關(guān)系,并說明理由;若,,,求線段的長.21.(6分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.22.(8分)已知點P,Q為平面直角坐標系xOy中不重合的兩點,以點P為圓心且經(jīng)過點Q作⊙P,則稱點Q為⊙P的“關(guān)聯(lián)點”,⊙P為點Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點”為______;(2)若點P(2,0),點Q(3,n),⊙Q為點P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點D(0,2),點H(m,2),⊙D是點H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點”,求m的取值范圍.23.(8分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動點引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關(guān)于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點E在邊BC上運動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).24.(10分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當(dāng)20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當(dāng)甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?25.(10分)某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?26.(12分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.求機場大巴與貨車相遇地到機場C的路程.27.(12分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【詳解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如圖2,過點P作PE⊥BC于E,

在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.2、D【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當(dāng)k>0時,y隨x的增大而減小,錯誤,應(yīng)該是當(dāng)k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應(yīng)該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運用所學(xué)知識解決問題,屬于中考??碱}型.3、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B4、B【解析】

解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質(zhì)求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.5、D【解析】

先利用鄰補角得到∠DCE=80°,然后根據(jù)平行線的性質(zhì)求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.6、D【解析】

解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.7、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.8、C【解析】分析:減去一個數(shù),等于加上這個數(shù)的相反數(shù).依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數(shù)的減法,方法指引:①在進行減法運算時,首先弄清減數(shù)的符號;②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù)).9、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.10、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.11、D【解析】試題分析:A.概率值反映了事件發(fā)生的機會的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項正確;B.?dāng)?shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術(shù)平均數(shù);3.極差;4.隨機事件12、D【解析】

直接利用三角板的特點,結(jié)合平行線的性質(zhì)得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,

∵DE∥CB,

∴∠BDE=∠ABC=45°,

∴∠BDF=45°-30°=15°.

故選D.【點睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

過點作,交延長線于,連接,交于,根據(jù)折疊的性質(zhì)可得,,根據(jù)同角的余角相等可得,可得,由平行線的性質(zhì)可得,根據(jù)的三角函數(shù)值可求出、的長,根據(jù)為中點即可求出的長,根據(jù)余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質(zhì)、菱形的性質(zhì)及三角函數(shù)的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,熟練掌握三角函數(shù)的定義并熟記特殊角的三角函數(shù)值是解題關(guān)鍵.14、.【解析】∵(a?3)x>1的解集為x<,∴不等式兩邊同時除以(a?3)時不等號的方向改變,∴a?3<0,∴a<3.故答案為a<3.點睛:本題考查了不等式的性質(zhì):在不等式的兩邊同時乘以或除以同一個負數(shù)不等號的方向改變.本題解不等號時方向改變,所以a-3小于0.15、15【解析】

分析:設(shè)輸出結(jié)果為y,觀察圖形我們可以得出x和y的關(guān)系式為:,將y的值代入即可求得x的值.詳解:∵當(dāng)y=127時,解得:x=43;當(dāng)y=43時,解得:x=15;當(dāng)y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應(yīng)用,熟練掌握一元一次方程的應(yīng)用是解題的關(guān)鍵.16、143549【解析】

根據(jù)題中密碼規(guī)律確定所求即可.【詳解】532=5×3×10000+5×2×100+5×(2+3)=151025924=9×2×10000+9×4×100+9×(2+4)=183654,863=8×6×10000+8×3×100+8×(3+6)=482472,∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案為:143549【點睛】本題考查有理數(shù)的混合運算,根據(jù)題意得出規(guī)律并熟練掌握運算法則是解題關(guān)鍵.17、1【解析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),由此可得出答案.【詳解】∵一組數(shù)據(jù)1,3,5,x,1,5的眾數(shù)和中位數(shù)都是1,∴x=1,故答案為1.【點睛】本題考查了眾數(shù)的知識,解答本題的關(guān)鍵是掌握眾數(shù)的定義.18、【解析】

根據(jù)已知條件設(shè)出直角三角形一直角邊與斜邊的長,再根據(jù)勾股定理求出另一直角邊的長,由三角函數(shù)的定義直接解答即可.【詳解】由sinα==知,如果設(shè)a=x,則c=2x,結(jié)合a2+b2=c2得b=x.∴cos==.故答案為.【點睛】本題考查的知識點是同角三角函數(shù)的關(guān)系,解題的關(guān)鍵是熟練的掌握同角三角函數(shù)的關(guān)系.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設(shè)⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設(shè)⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質(zhì)、銳角三角函數(shù)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題,正確尋找相似三角形,構(gòu)建方程解決問題嗎,屬于中考壓軸題.20、(1).理由見解析;(2).【解析】

(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結(jié)論;

(2)連接PE,設(shè)DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設(shè),由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關(guān)鍵.21、(1)證明見解析;(2)AC=4.【解析】

(1)連接,根據(jù)切線的性質(zhì)得到,根據(jù)垂直的定義得到,得到,然后根據(jù)圓周角定理證明即可;(2)設(shè)的半徑為,根據(jù)余弦的定義、勾股定理計算即可.【詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設(shè)的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【點睛】本題考查了切線的性質(zhì)、圓周角定理以及解直角三角形,掌握切線的性質(zhì)定理、圓周角定理、余弦的定義是解題的關(guān)鍵.22、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】

(1)根據(jù)定義,認真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當(dāng)⊙D與線段AB相切于點T時,由sin∠OBA=,得DT=DH1=,進而求出m1=即可,②當(dāng)⊙D過點A時,連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點F、點M在⊙上,∴F、M是⊙O的“關(guān)聯(lián)點”,故答案為F,M.(1)如圖1,過點Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y=﹣x+4,知A(3,0),B(0,4)∴可得AB=5①如圖1(1),當(dāng)⊙D與線段AB相切于點T時,連接DT.則DT⊥AB,∠DTB=90°∵sin∠OBA=,∴可得DT=DH1=,∴m1=,②如圖1(1),當(dāng)⊙D過點A時,連接AD.由勾股定理得DA==DH1=.綜合①②可得:≤m≤或≤m≤.【點睛】本題考查圓的新定義問題,三角函數(shù)和勾股定理的應(yīng)用,難度較大,分類討論,遷移知識理解新定義是解題關(guān)鍵.23、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關(guān)于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關(guān)于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關(guān)于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點D與點F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).24、(1)60;(2)s=10t-6000;(3)乙出發(fā)5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數(shù)法求一次函數(shù)解析式即可;(3)分兩種情況討論即可;(4)設(shè)乙從B步行到C的速度是x米/分鐘,根據(jù)當(dāng)甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當(dāng)20≤t≤1時,設(shè)s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當(dāng)20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當(dāng)1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發(fā)5分鐘和1分鐘時與甲在途中相遇.(4)設(shè)乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、行程問題等知識,解題的關(guān)鍵是理解題意,讀懂圖像信息,學(xué)會構(gòu)建一次函數(shù)解決實際問題,屬于中考常考題型.25、(1)m=20,n=8;55;(2)答案見解析.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論