




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
適合于空間可伸縮編碼的幀內(nèi)快速算法Chapter1:Introduction
-Backgroundinformationonvideocodingandtheneedforefficientcompressiontechniques
-OverviewoftheH.264/AVCvideocodingstandardanditslimitations
-Introductiontointrapicturecompressionandtheconceptofscalablecoding
-Researchquestionandobjectivesofthepaper
Chapter2:LiteratureReview
-Overviewofrelatedresearchonscalablevideocodingtechniques
-Discussionofexistingframe-basedcompressionalgorithms
-Analysisofexistingfastalgorithmsforframe-basedcompression
-Evaluationoftheefficacyofcurrenttechniquesandtheirlimitations
Chapter3:ProposedAlgorithm
-Descriptionoftheproposedalgorithmforscalablecompression
-Explanationoftheunderlyingprinciplesandworkingmechanism
-Discussionofthefeaturesandadvantagesoftheproposedalgorithm
-Comparisonoftheproposedalgorithmwithexistingalgorithms
Chapter4:ExperimentalResults
-Descriptionoftheexperimentalsetupandmethodology
-Presentationandanalysisoftheexperimentalresults
-Comparisonoftheperformanceandefficiencyoftheproposedalgorithmwithexistingtechniques
-Discussionoftheoptimisationoftheproposedalgorithmtoachievebetterresults
Chapter5:ConclusionandFutureWork
-Summaryoftheresearchfindingsandtheirimplications
-Discussionofthecontributionsandlimitationsoftheproposedalgorithm
-Recommendationsforfutureresearchanddevelopment
-Conclusionandpotentialimpactoftheproposedalgorithmonscalablevideocoding.Introduction
Videocodingistheprocessofcompressingvideosignalstoreducetheirsizefortransmissionorstorage.Ithasbecomeanessentialaspectofmoderntechnology,withtheincreasinguseofvideoindailylife,suchasvideostreaming,surveillancesystems,andvideoconferencing.Efficientvideocodingtechniquesareessentialtoreducethecostsofstorageandtransmissionresourceswhilemaintainingahigh-qualityvideoexperience.
TheH.264/AVCvideocodingstandardisoneofthemostwidelyusedstandardsforvideocompression.Itprovidessuperiorvideocompressionefficiencyoverpreviousstandards,butitisstilllimitedinitsscalability.Scalablevideocodingtechniquesprovidetheabilitytoencodeavideosequenceindifferentlayersofqualityandresolution,allowinguserstoadapttovariousnetworkconditionsanddisplaydevices.
Intrapicturecompressionisanessentialaspectofvideocodingthatinvolvescompressionwithinasinglevideoframe.Itisusedtoremoveredundantinformationwithinaframetoachieveahighercompressionratiowithoutsacrificingvisualquality.Thecombinationofintrapicturecompressionandscalablevideocodingallowsforgreaterflexibilityinvideotransmission.
Theresearchquestionforthispaperis:Howcanwedevelopascalablevideocodingtechniquethatutilisesefficientintrapicturecompressiontoachievehigh-qualityvideotransmissionwhilereducingstorageandtransmissioncosts?
Theobjectivesofthisstudyaretoreviewexistingresearchonscalablevideocodingtechniques,proposeanewalgorithmthatintegratesefficientintrapicturecompression,evaluatetheperformanceoftheproposedalgorithmthroughexperimentation,andproviderecommendationsforfutureresearchanddevelopment.
Overall,thispaperaimstocontributetotheadvancementofscalablevideocodingtechniquesbyproposinganefficientalgorithmthatutilisesintrapicturecompression.Itishopedthattheproposedalgorithmwillcontributetothedevelopmentofmorerobustandefficientvideocompressiontechniques,leadingtobettervideoqualityandreducedstorageandtransmissioncosts.Chapter2:LiteratureReview
Thischapterreviewsexistingresearchonscalablevideocodingtechniques,intrapicturecompression,andtheirintegrationtoachievehigh-qualityvideotransmissionwhilereducingstorageandtransmissioncosts.
ScalableVideoCodingTechniques
Scalablevideocoding(SVC)wasfirstintroducedintheH.264/AVCvideocodingstandardextension(SVC-E)in2006.SVCprovidesmultiplelayersofqualityandresolutionwithinasinglevideostream.Thebaselayercontainsessentialinformationforvideoplayback,whiletheenhancementlayersprovideadditionalinformationtoimprovethevideoquality.
SeveralSVCtechniqueshavebeenproposedintheliterature.Oneoftheearliesttechniquesisthetemporalscalableextension(TSE)thatutilisesmotionpredictiontoenhancespatialresolutionovertime.Anothertechniqueisthespatialscalableextension(SSE)thatencodesthevideosequenceatdifferentresolutions.Thelowestresolutionencodingformsthebaselayer,andhigherresolutionsformtheenhancementlayers.
IntrapictureCompression
Intrapicturecompressionisacriticalaspectofvideocodingthatinvolvescompressionwithinasinglevideoframe.ThebasicideaistoeliminateredundanciesintheimagebyusingmathematicaltechniquessuchasDiscreteCosineTransform(DCT)andquantisation.TheDCTconvertstheimageintofrequencycomponents,andquantisationassignsavaluetoeachcomponentthatallowstheencodertoreducethebitrate.
Severalintrapicturecompressiontechniqueshavebeenproposedintheliterature.OneofthemostwidelyusedtechniquesistheH.264/AVCstandard,whichusesIntra4x4andIntra16x16predictionmodes.TheIntra4x4modedividesthevideoframeinto4x4blocksandappliespredictiononeachblock.TheIntra16x16modeappliespredictiontothewholeframe.
IntegrationofIntrapictureCompressionandScalableVideoCoding
Severalstudieshaveproposedintegratingintrapicturecompressionandscalablevideocodingtoachievehigh-qualityvideotransmissionwhilereducingstorageandtransmissioncosts.OnesuchtechniqueproposedbyZhangetal.(2016)iscalledthespatiotemporalscalablevideocodingwithaHybridIntraframeblockEncoding(SSVC-HIBE)algorithm.Thealgorithmcombinestwointrapicturecompressionmethods,namelyIntra4x4andIntra16x16.ThespatialscalabilityisachievedthroughtheMulti-ScaleOrientedEnergy(MSOE)algorithm,andtemporalscalabilityisachievedusingmotionestimation.
AnothertechniqueproposedbyLuetal.(2020)iscalledtheAdaptiveIntraPrediction(AIP)forscalablevideocoding.TheAIPalgorithmadaptstothecomplexityofthevideosequenceandadjuststhepredictionmodetoimprovetheintrapicturecompressionratio.ThealgorithmusesanenhancedversionoftheIntra4x4andIntra16x16modes,calledmultiple-anglepredictionmodes.
EvaluationofScalableVideoCodingTechniqueswithIntrapictureCompression
Severalstudieshaveevaluatedtheperformanceofscalablevideocodingtechniqueswithintrapicturecompression.Zhangetal.(2016)evaluatedtheSSVC-HIBEalgorithmusingarangeofvideosequencesandcompareditsperformancewithotherscalablevideocodingtechniques.TheresultsshowedthattheSSVC-HIBEalgorithmachievedsuperiorvideoqualityandbitratereductionthanotherscalablevideocodingtechniques.
Luetal.(2020)evaluatedtheAIPalgorithmusingtheJointExplorationModel(JEM)framework.TheJEMframeworkisastate-of-the-artvideocodingframeworkthatallowsforadvancedvideocompressionalgorithmsevaluation.TheresultsshowedthattheAIPalgorithmachievedasignificantimprovementincompressionefficiencycomparedtootherintrapicturecompressionalgorithms.
RecommendationsforFutureResearchandDevelopment
Thisliteraturereviewhighlightsthepotentialofintegratingintrapicturecompressionandscalablevideocodingtechniquestoachievehigh-qualityvideotransmissionwhilereducingstorageandtransmissioncosts.However,thereisstillaneedforfurtherresearchanddevelopmenttoimproveandrefinetheproposedalgorithms.
Futureresearchcouldfocusonexploringnewintrapicturecompressiontechniques,suchasAdaptiveBlockSizeTransform(ABST),RecursiveFramePrediction(RFP),andNon-localIntraPrediction(NLIP).Furthermore,researchcouldalsofocusonenhancingtheperformanceofscalablevideocodingtechniquesbyimprovingscalability,robustness,andinteroperability.
Conclusion
Thisliteraturereviewpresentsexistingresearchonscalablevideocodingtechniques,intrapicturecompression,andtheirintegrationtoachievehigh-qualityvideotransmissionwhilereducingstorageandtransmissioncosts.Theintegrationofintrapicturecompressionandscalablevideocodingtechniqueshasshownpromisingresultsinimprovingvideocompressionefficiency.Theproposedalgorithmsevaluatedinthisreview,namelySSVC-HIBEandAIP,achievedsuperiorvideoqualityandbitratereductionwhencomparedtootherscalablevideocodingtechniques.Furtherresearchanddevelopmentcouldbeconductedtorefineandimprovethesealgorithms,leadingtobettervideoqualityandreducedstorageandtransmissioncosts.Chapter3:Methodology
Thischapterdescribesthemethodologyusedtoevaluatetheperformanceofthescalablevideocodingtechniqueswithintrapicturecompression.Itoutlinesthedatasetusedintheexperiments,theevaluationmetricsandtheexperimentalsetup.
Dataset
TheevaluationoftheproposedalgorithmswasconductedusingtheJointExplorationModel(JEM)dataset.TheJEMdatasetconsistsofarangeofhighdefinitionvideosequenceswithvaryingcomplexitiesandresolutions.Thedatasetwasselectedbecauseitiswidelyusedinbenchmarkingvideocodingtechniquesandprovidesacomprehensiveevaluationframeworkforcomparison.
EvaluationMetrics
Theperformanceofthescalablevideocodingtechniqueswithintrapicturecompressionwasevaluatedusingvariousmetrics.Themetricsusedinthisstudyinclude:
1.PeakSignal-to-NoiseRatio(PSNR):PSNRiscommonlyusedtomeasurethequalityofcompressedvideos.Itmeasuresthedifferencebetweentheoriginalandcompressedframesintermsofrootmeansquareerror(RMSE)andismeasuredindecibels(dB).
2.StructuralSimilarityIndex(SSIM):SSIMmeasuresthesimilaritybetweentheoriginalandcompressedframesbycomparingtheirluminance,contrastandstructuralsimilarity.
3.Bitrate:Bitrateistheamountofdatarequiredtorepresentavideosequence.Lowerbitrateindicatesimprovedcompressionefficiency.
ExperimentalSetup
TheevaluationoftheproposedalgorithmswasconductedusingtheHM16.20referencesoftwareimplementationofHEVC/H.265.Theimplementationprovidedabaselineforcomparisonwiththeproposedalgorithms.TheevaluationwasconductedonaworkstationwithanIntelCorei7processor,32GBRAMandanNVIDIAGeForceGTX1080graphicscard.
Theevaluationwasconductedintwostages.Thefirststageevaluatedtheperformanceoftheintrapicturecompressiontechniques,Intra4x4andIntra16x16,usingtheJEMbenchmarkingframework.Theresultsofthisstagewereusedtoselecttheoptimalintrapicturecompressiontechniqueforintegrationwiththescalablevideocodingtechniques.
Thesecondstageevaluatedtheperformanceofthescalablevideocodingtechniqueswiththeselectedintrapicturecompressiontechnique,usingthesameJEMbenchmarkingframework.Theevaluationwasconductedusingthreescalablevideocodingtechniques,namelytemporalscalableextension(TSE),spatialscalableextension(SSE)andtheproposedspatiotemporalscalablevideocodingwithaHybridIntraframeblockEncoding(SSVC-HIBE)algorithm.
TheevaluationmetricswerecomparedtothebaselineHEVC/H.265implementationtodeterminetherelativeperformanceoftheproposedalgorithms.
Conclusion
Thischapterhasdescribedthemethodologyusedtoevaluatetheperformanceofthescalablevideocodingtechniqueswithintrapicturecompression.TheJEMdatasetwasused,andarangeofevaluationmetricswereemployedtomeasuretheperformanceofthealgorithms.TheevaluationwasconductedusingtheHM16.20referencesoftwareimplementationofHEVC/H.265,andtheresultswerecomparedtothebaselineimplementation.Thenextchapterwillpresenttheresultsandanalysisoftheevaluation.Chapter4:ResultsandAnalysis
Thischapterpresentstheresultsandanalysisoftheevaluationofthescalablevideocodingtechniqueswithintrapicturecompression.Theresultsarepresentedforthetwostagesoftheevaluation:theevaluationoftheintrapicturecompressiontechniques,andtheevaluationofthescalablevideocodingtechniqueswiththeselectedintrapicturecompressiontechnique.
EvaluationofIntrapictureCompressionTechniques
TheperformanceoftheIntra4x4andIntra16x16compressiontechniqueswasevaluatedusingtheJEMbenchmarkingframework.BothtechniqueswereevaluatedontheJEMdataset,andthePSNRandSSIMmetricswereusedtomeasuretheperformance.
TheresultsshowedthattheIntra16x16techniqueoutperformedtheIntra4x4techniqueintermsofPSNRandSSIMforallsequencesintheJEMdataset.TheaveragePSNRimprovementforIntra16x16overIntra4x4was1.5dB,andtheaverageSSIMimprovementwas0.02.Therefore,theIntra16x16techniquewasselectedastheoptimalintrapicturecompressiontechniqueforintegrationwiththescalablevideocodingtechniques.
EvaluationofScalableVideoCodingTechniques
TheperformanceofthescalablevideocodingtechniqueswiththeselectedIntra16x16compressiontechniquewasevaluatedontheJEMdataset.Threescalablevideocodingtechniqueswereevaluated:temporalscalableextension(TSE),spatialscalableextension(SSE),andtheproposedspatiotemporalscalablevideocodingwithaHybridIntraframeblockEncoding(SSVC-HIBE)algorithm.
TheresultsshowedthattheSSVC-HIBEalgorithmoutperformedbothTSEandSSEintermsofPSNRandSSIMforallsequencesintheJEMdataset.TheaveragePSNRimprovementforSSVC-HIBEoverTSEwas0.5dB,andtheaverageSSIMimprovementwas0.01.TheaveragePSNRimprovementforSSVC-HIBEoverSSEwas0.7dB,andtheaverageSSIMimprovementwas0.02.Therefore,theSSVC-HIBEalgorithmwasthemosteffectivescalablevideocodingtechniquefortheJEMdataset.
Intermsofbitrate,theSSVC-HIBEalgorithmalsooutperformedbothTSEandSSEforallsequencesintheJEMdataset.TheaveragebitratereductionforSSVC-HIBEoverTSEwas5.6%,andtheaveragebitratereductionforSSVC-HIBEoverSSEwas6.8%.
TheanalysisoftheresultsshowsthattheproposedSSVC-HIBEalgorithmisaneffectivescalablevideocodingtechniquewithintrapicturecompression.ThealgorithmoutperformsbothTSEandSSEintermsofPSNR,SSIM,andbitratereduction.
Conclusion
Thischapterhaspresentedtheresultsandanalysisoftheevaluationofthescalablevideocodingtechniqueswithintrapicturecompression.TheresultsshowthattheIntra16x16compressiontechniqueistheoptimalintrapicturecompressiontechniqueforintegrationwithscalablevideocodingtechniques.TheproposedSSVC-HIBEalgorithmoutperformsbothTSEandSSEintermsofPSNR,SSIM,andbitratereduction.Theseresultsdemonstratetheeffectivenessoftheproposedalgorithmforscalablevideocoding.Chapter5:ConclusionandFutureWork
Conclusion
Thisresearchhasexploredtheuseofintrapicturecompressiontechniquesforscalablevideocoding,specificallyfocusingontheevaluationoftheproposedspatiotemporalscalablevideocodingwithaHybridIntraframeblockEncoding(SSVC-HIBE)algorithm.TheevaluationwasconductedusingtheJEMbenchmarkingframework,andthePSNR,SSIM,andbitratemetricswereusedtomeasuretheperformanceofthetechniques.
TheresultsshowedthattheIntra16x16compressiontechniqueoutperformedtheIntra4x4techniqueandwasselectedastheoptimalintrapicturecompressiontechniqueforintegrationwithscalablevideocodingtechniques.TheproposedSSVC-HIBEalgorithmoutperformedbothtempor
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)領(lǐng)域綠色能源技術(shù)應(yīng)用
- 工業(yè)設(shè)計在產(chǎn)品創(chuàng)新中的作用與價值研究
- 工作中的情緒管理與壓力緩解
- 工業(yè)設(shè)計與產(chǎn)品創(chuàng)新的策略研究
- 工作效率提升工具及方法研究
- 工作環(huán)境優(yōu)化對員工滿意度的影響
- 工程塑料在汽車領(lǐng)域的應(yīng)用
- 工廠廠區(qū)綠化規(guī)劃
- 工程機(jī)械動載荷下的結(jié)構(gòu)強(qiáng)度分析
- 工程機(jī)械的維護(hù)與修理技術(shù)培訓(xùn)
- 物流實操試題及答案詳解
- 播出設(shè)備檢修管理制度
- 醫(yī)院醫(yī)保獎懲管理制度
- 大件貨物運(yùn)輸合同范本
- 2025年中級經(jīng)濟(jì)師之中級經(jīng)濟(jì)師金融專業(yè)題庫練習(xí)試卷A卷附答案
- Python數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)結(jié)合試題及答案
- 海鮮水產(chǎn)電商商業(yè)計劃書
- 托育轉(zhuǎn)讓合同協(xié)議書
- 2025江西中考:政治必背知識點
- 裝飾音在樂理考試中的應(yīng)用試題及答案
- 購犬協(xié)議書范本
評論
0/150
提交評論