




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市永泰縣第四中學(xué)2022年高二數(shù)學(xué)理模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.曲線在點處的切線方程是(
)(A)
(B)
(C)
(D)參考答案:A略2.兩圓x2+y2=9和x2+y2﹣8x+6y+9=0的公切線條數(shù)是()A.1條 B.2條 C.3條 D.4條參考答案:B【考點】圓與圓的位置關(guān)系及其判定.【分析】把兩圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,根據(jù)兩圓的圓心距小于半徑之和,可得兩圓相交,由此可得兩圓的公切線的條數(shù).【解答】解:圓x2+y2=9表示以(0,0)為圓心,半徑等于3的圓.圓x2+y2﹣8x+6y+9=0即(x﹣4)2+(y+3)2=16,表示以(4,﹣3)為圓心,半徑等于4的圓.兩圓的圓心距等于=5,小于半徑之和,大于半徑差,故兩圓相交,故兩圓的公切線的條數(shù)為2,故選B.3.已知焦點在x軸上的雙曲線的漸近線方程為y=±x,則該雙曲線的離心率為()A. B. C. D.或參考答案:C【考點】雙曲線的簡單性質(zhì).【分析】利用雙曲線的漸近線方程轉(zhuǎn)化求解離心率即可.【解答】解:焦點在x軸上的雙曲線的漸近線方程為y=±x,可得:=,,可得e=.故選:C.4.已知在復(fù)平面內(nèi)對應(yīng)的點在第四象限,則實數(shù)m的取值范圍是(
)A.(-∞,-3)
B.(1,+∞)
C.(-1,3)
D.(-3,1)參考答案:D5.不共面的四個定點到平面的距離都相等,這樣的平面共有(
)個A.3個
B.4個
C.6個
D.7個參考答案:D空間中不共面的四個定點構(gòu)成三棱錐,如圖:三棱錐,①當(dāng)平面一側(cè)有一點,另一側(cè)有三點時,即對此三棱錐進(jìn)行換底,則三棱錐有四種表示形式,此時滿足條件的平面?zhèn)€數(shù)是四個;②當(dāng)平面一側(cè)有兩點,另一側(cè)有兩點時,即構(gòu)成的直線是三棱錐的相對棱,因三棱錐的相對棱有三對,則此時滿足條件的平面?zhèn)€數(shù)是三個,所以滿足條件的平面共有個,故選D.
6.左面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為(
)A.
i>20
B.
i<20C.
i>=20 D.
i<=20
參考答案:D7.已知全集,,,則(
)
A.
B.
C.
D.參考答案:D8.已知數(shù)列滿足則此數(shù)列是(
)(A)等比數(shù)列
(B)等差數(shù)列
(C)既等差又等比數(shù)列
(D)既非等差又非等比數(shù)列參考答案:B9.若方程表示雙曲線,則k的取值范圍是(
)A、
B、
C、
D、參考答案:D10.在△ABC中,角A,B,C所對的邊分別是a,b,c,若,則△ABC的形狀是(
)A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形參考答案:D略二、填空題:本大題共7小題,每小題4分,共28分11.等體積的球和正方體,它們的表面積的大小關(guān)系是___參考答案:
解析:設(shè),
12.已知拋物線的弦AB的中點的橫坐標(biāo)為2,則AB的最大值為__________.參考答案:6利用拋物線的定義可知,設(shè)A(x1,y1),B(x2,y2),x1+x2=4,那么|AF|+|BF|=x1+x2+2,由圖可知|AF|+|BF|≥|AB|?|AB|≤6,當(dāng)AB過焦點F時取最大值為6.13.給出下列命題:①函數(shù)y=cos是奇函數(shù);②存在實數(shù),使得sin+cos=;③若、是第一象限角且<,則tan<tan;④x=是函數(shù)y=sin的一條對稱軸方程;⑤函數(shù)y=sin的圖象關(guān)于點成中心對稱圖形.其中命題正確的是
(填序號).參考答案:①④略14.命題“”的否定為____________________.參考答案:特稱命題的否定為全稱,所以“”的否定為“”.點睛:命題的否定和否命題要做好區(qū)別:(1)否命題是指將命題的條件和結(jié)論都否定,而且與原命題的真假無關(guān);(2)否命題是只否結(jié)論,特別的全稱命題的否定為特稱,特稱命題的否定為全稱.15.在中,,則_____________.參考答案:16.在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)服從X~且知滿分為150分,這個班的學(xué)生共56人,求這個班在這次數(shù)學(xué)考試中130分以上的人數(shù)大約是
參考答案:917.已知,tanα=2,則cosα=.參考答案:【考點】GI:三角函數(shù)的化簡求值.【分析】由題意利用同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個象限中的符號,求得cosα的值.【解答】解:∵已知,∴sinα>0,cosα>0,∵tanα=2=,sin2α+cos2α=1,則cosα=,故答案為:.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.
作為重慶一中民主管理的實踐之一,高三年級可以優(yōu)先選擇教學(xué)樓,為了調(diào)遷了解同學(xué)們的意愿,現(xiàn)隨機(jī)調(diào)出了16名男生和14名女生,結(jié)果顯示,男女生中分別有10人和5人意愿繼續(xù)留在第一教學(xué)樓.(1)根據(jù)以上數(shù)據(jù)完成以下2×2的列聯(lián)表:
留在第一教學(xué)樓不留在第一教學(xué)樓總計男生10
16女生5
14總計
30(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗,能否有90%的把握認(rèn)為性別與意愿留在第一教學(xué)樓有關(guān)?(3)如果從意愿留在第一教學(xué)樓的女生中(其中恰有3人精通制作PPT),選取2名負(fù)責(zé)為第一教學(xué)樓各班圖書角作一個總展示的PPT,用于樓道電子顯示屏的宣傳,那么選出的女生中至少有1人能勝任此工作的概率是多少?參考公式:,其中n=a+b+c+d.
參考數(shù)據(jù):P(K2≥k)0.400.250.100.010k0.7081.3232.7066.635
參考答案:19.已知拋物線E:x2=4y,過M(1,4)作拋物線E的弦AB,使弦AB以M為中點,(1)求弦AB所在直線的方程.(2)若直線l:y=x+b與拋物線E相切于點P,求以點P為圓心,且與拋物線E的準(zhǔn)線相切的圓的方程.參考答案:【考點】直線與圓錐曲線的關(guān)系;圓的標(biāo)準(zhǔn)方程.【專題】計算題;方程思想;轉(zhuǎn)化思想;圓錐曲線的定義、性質(zhì)與方程.【分析】(1)設(shè)A(x1,y1),B(x2,y2),利用平方差法,求出直線的斜率,然后求解直線方程.(2)利用函數(shù)的導(dǎo)數(shù)求出曲線的斜率,求出切點坐標(biāo),得到圓的圓心坐標(biāo),求出圓的半徑,即可求解圓的方程.【解答】解:(1)設(shè)A(x1,y1),B(x2,y2),拋物線E:x2=4y,過M(1,4)作拋物線E的弦AB,使弦AB以M為中點由,兩式相減化簡得KAB==,所以直線AB的方程為y﹣4=(x﹣0),即x﹣2y+7=0.(2)設(shè)切點P(x0,y0),由x2=4y,得y′=,所以=1,可得x0=2,即點P(2,1),圓P的半徑為2,所以圓P的方程為:(x﹣2)2+(y﹣1)2=4.【點評】本題考查拋物線的簡單性質(zhì),考查運(yùn)算求解能力,平方差法以及設(shè)而不求方法的應(yīng)用,注意解題方法的積累,屬于中檔題.20.如圖,已知⊥平面,∥,=2,且是的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面BCE⊥平面;
(III)
求此多面體的體積.
參考答案:解:(Ⅰ)取CE中點P,連結(jié)FP、BP,∵F為CD的中點,∴FP∥DE,且FP=又AB∥DE,且AB=∴AB∥FP,且AB=FP,∴ABPF為平行四邊形,∴AF∥BP.
…………3分又∵AF平面BCE,BP平面BCE,∴AF∥平面BCE
…………5分
(Ⅱ)∵,所以△ACD為正三角形,∴AF⊥CD∵AB⊥平面ACD,DE//AB
∴AF⊥平面CDE
…………8分又BP∥AF
∴BP⊥平面CDE又∵BP平面BCE∴平面BCE⊥平面CDE
…………10分(III)此多面體是一個以C為定點,以四邊形ABED為底邊的四棱錐,,等邊三角形AD邊上的高就是四棱錐的高
…………14分略21.如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AB=2AD=4,BD=2,PD⊥底面ABCD.(Ⅰ)證明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D大小為,求AP與平面PBC所成角的正弦值.參考答案:【考點】與二面角有關(guān)的立體幾何綜合題;平面與平面垂直的判定.【分析】(Ⅰ)由已知條件推導(dǎo)出BC⊥BD,PD⊥BC,從而得到BC⊥平面PBD,由此能證明平面PBC⊥平面PBD.(Ⅱ)由(Ⅰ)知,BC⊥平面PBD,從而得到∠PBD即為二面角P﹣BC﹣D的平面角,分別以DA、DB、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,利用向量法能求出AP與平面PBC所成角的正弦值.【解答】(Ⅰ)證明:∵CD2=BC2+BD2.∴BC⊥BD.又∵PD⊥底面ABCD.∴PD⊥BC.又∵PD∩BD=D.∴BC⊥平面PBD.而BC?平面PBC,∴平面PBC⊥平面PBD.…(4分)(Ⅱ)由(Ⅰ)知,BC⊥平面PBD,所以∠PBD即為二面角P﹣BC﹣D的平面角,即∠PBD=.而,所以.∵底面ABCD為平行四邊形,∴DA⊥DB,分別以DA、DB、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系.則A(2,0,0),,,,所以,,,,設(shè)平面PBC的法向量為,則即令b=1則,∴AP與平面PBC所成角的正弦值為:.…(12分)【點評】本題考查平面與平面垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.22.設(shè)函數(shù)(1)當(dāng)若在存在,使得不等式成立,求的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)生講課課件圖片
- 車輛抵押權(quán)登記與抵押物抵押協(xié)議
- 誠信通平臺企業(yè)信用評級與風(fēng)險管理合作協(xié)議
- 餐飲店租賃權(quán)及商標(biāo)使用權(quán)轉(zhuǎn)讓合同范本
- 場監(jiān)督管理局違反合同法行政處罰協(xié)議
- 鐵路線路相關(guān)知識考試試卷含答案真題
- 健身器材安全標(biāo)準(zhǔn)與老年人適應(yīng)性設(shè)計考核試卷
- 低溫倉儲倉庫空氣質(zhì)量監(jiān)測與管理考核試卷
- 水產(chǎn)養(yǎng)殖市場消費(fèi)者購買決策影響因素分析考核試卷
- 家電行業(yè)社交媒體營銷數(shù)據(jù)挖掘與分析考核試卷
- 信息安全培訓(xùn)《釣魚郵件防范技巧》
- 2025至2030中國燙印箔行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 部編版高一語文必修上冊教案計劃
- 臨時工請假管理制度
- 小學(xué)用電安全課件
- 2025年北京市高考英語試卷真題(含答案解析)
- 2025年中國浮萍項目投資可行性研究報告
- 商洛學(xué)院《大學(xué)學(xué)術(shù)綜合英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年高考英語全國二卷聽力試題答案詳解講解(課件)
- 高級采氣工理論練習(xí)卷附答案
- 國開電大【管理英語3單元自測1-8答案】+【管理英語4形考任務(wù)單元自測1-8答案】
評論
0/150
提交評論