




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法不正確的是A.方程有實根函數(shù)有零點B.有兩個不同的實根C.函數(shù)在上滿足,則在內(nèi)有零點D.單調(diào)函數(shù)若有零點,至多有一個2.設(shè)集合,,若對于函數(shù),其定義域為,值域為,則這個函數(shù)的圖象可能是()A. B.C. D.3.若角,均為銳角,,,則()A. B.C. D.4.已知函數(shù)是上的偶函數(shù),且在區(qū)間上是單調(diào)遞增的,,,是銳角三角形的三個內(nèi)角,則下列不等式中一定成立的是A. B.C. D.5.已知為平面,為直線,下列命題正確的是A.,若,則B.,則C.,則D.,則6.函數(shù)的部分圖象如圖所示,則A.B.C.D.7.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.8.已知函數(shù),那么的值為()A.25 B.16C.9 D.39.圓過點的切線方程是()A. B.C. D.10.要得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度二、填空題:本大題共6小題,每小題5分,共30分。11.圓柱的側(cè)面展開圖是邊長分別為的矩形,則圓柱的體積為_____________12.已知角的終邊過點,則_______13.已知函數(shù)則不等式的解集是_____________14.冪函數(shù)的圖像過點,則___________.15.若,,則=______;_______16.正三棱錐P﹣ABC的底面邊長為1,E,F(xiàn),G,H分別是PA,AC,BC,PB的中點,四邊形EFGH的面積為S,則S的取值范圍是__三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過兩點,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線過點,且被圓截得的弦長為,求直線的方程.18.已知直線經(jīng)過點(1)若點在直線上,求直線的方程;(2)若直線與直線平行,求直線的方程19.設(shè)全集U=R,集合,(1)當(dāng)時,求;(2)若A∩B=A,求實數(shù)a的取值范圍20.已知函數(shù)是定義在1,1上的奇函數(shù),且.(1)求m,n的值;(2)判斷在1,1上的單調(diào)性,并用定義證明;(3)設(shè),若對任意的,總存在,使得成立,求實數(shù)k的值.21.已知函數(shù)的圖象在定義域上連續(xù)不斷.若存在常數(shù),使得對于任意的,恒成立,稱函數(shù)滿足性質(zhì).(1)若滿足性質(zhì),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和.(參考數(shù)據(jù):)(3)若函數(shù)滿足性質(zhì),求證:函數(shù)存在零點.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】A選項,根據(jù)函數(shù)零點定義進行判斷;B選項,由根的判別式進行求解;C選項,由零點存在性定理及舉出反例進行說明;D選項,由函數(shù)單調(diào)性定義及零點存在性定理進行判斷.【詳解】A.根據(jù)函數(shù)零點的定義可知:方程有實根?函數(shù)有零點,∴A正確B.方程對應(yīng)判別式,∴有兩個不同實根,∴B正確C.根據(jù)根的存在性定理可知,函數(shù)必須是連續(xù)函數(shù),否則不一定成立,比如函數(shù),滿足條件,但在內(nèi)沒有零點,∴C錯誤D.若函數(shù)為單調(diào)函數(shù),則根據(jù)函數(shù)單調(diào)性的定義和函數(shù)零點的定義可知,函數(shù)和x軸至多有一個交點,∴單調(diào)函數(shù)若有零點,則至多有一個,∴D正確故選:C2、D【解析】利用函數(shù)的概念逐一判斷即可.【詳解】對于A,函數(shù)的定義域為,不滿足題意,故A不正確;對于B,一個自變量對應(yīng)多個值,不符合函數(shù)的概念,故B不正確;對于C,函數(shù)的值域為,不符合題意,故C不正確;對于D,函數(shù)的定義域為,值域為,滿足題意,故D正確.故選:D【點睛】本題考查了函數(shù)的概念以及函數(shù)的定義域、值域,考查了基本知識的掌握情況,理解函數(shù)的概念是解題的關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】根據(jù)給定條件,利用同角公式及差角的正弦公式計算作答.【詳解】角,均為銳角,即,而,則,又,則,所以,.故選:B4、C【解析】因為是銳角的三個內(nèi)角,所以,得,兩邊同取余弦函數(shù),可得,因為在上單調(diào)遞增,且是偶函數(shù),所以在上減函數(shù),由,可得,故選C.點睛:本題考查了比較大小問題,解答中熟練推導(dǎo)抽象函數(shù)的圖象與性質(zhì),合理利用函數(shù)的單調(diào)性進行比較大小是解答的關(guān)鍵,著重考查學(xué)生的推理與運算能力,本題的解答中,根據(jù)銳角三角形,得出與的大小關(guān)系是解答的一個難點.5、D【解析】選項直線有可能在平面內(nèi);選項需要直線在平面內(nèi)才成立;選項兩條直線可能異面、平行或相交.選項符合面面平行的判定定理,故正確.6、A【解析】由題圖知,,最小正周期,所以,所以.因為圖象過點,所以,所以,所以,令,得,所以,故選A.【考點】三角函數(shù)的圖象與性質(zhì)【名師點睛】根據(jù)圖象求解析式問題的一般方法是:先根據(jù)函數(shù)圖象的最高點、最低點確定A,h的值,由函數(shù)的周期確定ω的值,再根據(jù)函數(shù)圖象上的一個特殊點確定φ值7、C【解析】根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.8、C【解析】根據(jù)分段函數(shù)解析式求得.【詳解】因為,所以.故選:C9、D【解析】先求圓心與切點連線的斜率,再利用切線與連線垂直求得切線的斜率結(jié)合點斜式即可求方程.【詳解】由題意知,圓:,圓心在圓上,,所以切線的斜率為,所以在點處的切線方程為,即.故選:D.10、C【解析】根據(jù)三角函數(shù)圖象的平移變換求解即可.【詳解】由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向左平移個單位長度即可.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側(cè)面展開圖是邊長為2a與a的矩形,當(dāng)母線為a時,圓柱的底面半徑是,此時圓柱體積是;當(dāng)母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側(cè)面展開圖,圓柱的體積,容易疏忽一種情況,導(dǎo)致錯誤.12、【解析】由三角函數(shù)定義可直接得到結(jié)果.【詳解】的終邊過點,故答案為:.13、【解析】分和0的大小關(guān)系分別代入對應(yīng)的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當(dāng),即時,,故;當(dāng),即時,,故;∴不等式的解集是:.故答案為:.14、【解析】先設(shè),再由已知條件求出,即,然后求即可.【詳解】解:由為冪函數(shù),則可設(shè),又函數(shù)的圖像過點,則,則,即,則,故答案為:.【點睛】本題考查了冪函數(shù)的解析式的求法,重點考查了冪函數(shù)求值問題,屬基礎(chǔ)題.15、①.②.【解析】首先指對互化,求,再求;第二問利用指數(shù)運算,對數(shù),化簡求值.【詳解】,,所以;,,所以故答案為:;16、(,+∞)【解析】由正三棱錐可得四邊形EFGH為矩形,并可得其邊長與三棱錐棱長關(guān)系,從而可得面積S的范圍.【詳解】∵棱錐P﹣ABC為底面邊長為1的正三棱錐∴AB⊥PC又∵E,F(xiàn),G,H,分別是PA,AC,BC,PD的中點,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC則四邊形EFGH為一個矩形又∵PC,∴EF,∴S=EFEH,∴四邊形EFGH的面積S的取值范圍是(,+∞),故答案為:(,+∞)三、三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】(1)設(shè)圓的方程為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得圓心到直線的距離為,分類直線的斜率不存在和斜率存在兩種情況討論,即可求得直線的方程.【小問1詳解】解:圓經(jīng)過兩點,且圓心在直線上,設(shè)圓的方程為,可得,解得,所以圓的方程為,即.【小問2詳解】解:由圓,可得圓心,半徑為,因為直線過點,且被圓截得的弦長為,可得,解得,即圓心到直線的距離為,當(dāng)直線的斜率不存在時,直線的方程為,此時圓心到直線的距離為,符合題意;當(dāng)直線的斜率存在時,設(shè)直線的斜率為,可得直線的方程為,即由圓心到直線的距離為,解得,所以直線的方程為,即,綜上可得,所求直線方程為或.18、(1)(2)【解析】(1)利用兩點式求得直線的方程.(2)利用點斜式求得直線的方程.【小問1詳解】∵直線經(jīng)過點,且點在直線上,∴由兩點式方程得,即,∴直線的方程為【小問2詳解】若直線與直線平行,則直線的斜率為,∵直線經(jīng)過點,∴直線的方程為,即19、(1)或(2)【解析】(1)化簡集合B,根據(jù)補集、并集的運算求解;(2)由條件轉(zhuǎn)化為A?B,分類討論,建立不等式或不等式組求解即可.【小問1詳解】當(dāng)時,,,或,或【小問2詳解】由A∩B=A,得A?B,當(dāng)A=?時,則3a>a+2,解得a>1,當(dāng)A≠?時,則,解得,綜上,實數(shù)a的取值范圍是20、(1),(2)在上遞增,證明見解析(3)【解析】(1)由為1,1上奇函數(shù)可得,再結(jié)合可求出m,n的值;(2)直接利用單調(diào)性的定義判斷即可,(3)由題意可得,而,然后分,和三種情況求解的最大值,使其最大值大于等于,解不等式可得結(jié)果【小問1詳解】依題意函數(shù)是定義在上的奇函數(shù),所以,∴,所以,經(jīng)檢驗,該函數(shù)為奇函數(shù).【小問2詳解】在上遞增,證明如下:任取,其中,,所以,故在上遞增.【小問3詳解】由于對任意的,總存在,使得成立,所以.當(dāng),恒成立當(dāng)時,在上遞增,,所以.當(dāng)時,在上遞減,,所以.綜上所述,21、(1)(2)答案見解析(3)證明見解析【解析】(1)由滿足性質(zhì)可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)設(shè)滿足,利用零點存在定理證明關(guān)于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和;(3)分別討論,,時函數(shù)的零點的存在性,由此完成證明.【小問1詳解】因為滿足性質(zhì),所以對于任意的x,恒成立.又因為,所以,,,由可得,由可得,所以,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 選煤技術(shù)服務(wù)合同協(xié)議
- 暫緩訴訟協(xié)議書
- 合同協(xié)議書模板內(nèi)容
- 轉(zhuǎn)讓面店訂金協(xié)議書范本
- 足球安全協(xié)議書范本
- 職業(yè)技??荚囋囶}及答案
- 部隊飯?zhí)猛獍贤瑓f(xié)議
- 逾期賠償協(xié)議書范本
- 激光脫毛協(xié)議書
- 日照中考試題及答案
- 冠心病氣陰兩虛
- 中國鐵路發(fā)展史課件
- 廚師技能測試題及答案
- 【9物二?!可钲谑?025年4月份九年級中考第二次模擬測試物理試卷(含答案)
- 2024年度云南省二級造價工程師之安裝工程建設(shè)工程計量與計價實務(wù)題庫檢測試卷A卷附答案
- 射頻消融術(shù)后并發(fā)癥及護理
- 2025屆新高考教學(xué)教研聯(lián)盟高三第二次聯(lián)考語文試題及答案
- 萬科施工組織設(shè)計
- 明天控股經(jīng)營性子公司運營監(jiān)控管理制度有用
- AI技術(shù)在主題公園中的人性化服務(wù)及體驗提升
- 安徽省六校2024-2025學(xué)年高三下學(xué)期2月素質(zhì)檢測考試生物試題含答案
評論
0/150
提交評論