流體力學(xué)特論Ch6課件_第1頁
流體力學(xué)特論Ch6課件_第2頁
流體力學(xué)特論Ch6課件_第3頁
流體力學(xué)特論Ch6課件_第4頁
流體力學(xué)特論Ch6課件_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

IntroductiontoFluidMechanicsChapter6Incompressible

InviscidFlow1MainTopicsMomentumEquationforFrictionlessFlow:Euler’sEquationEuler’sEquationinStreamlineCoordinatesBernoulliEquation–IntegrationofEuler’sEquationAlongaStreamlineforSteadyFlowTheBernoulliEquationInterpretedasanEnergyEquationEnergyGradeLineandHydraulicGradeLine2MOMENTUMEQUATIONEQUATIONFORFRICTIONLESSFLOW:EULER’SEQUATIONEuler’sEquationThisequationstatesthatforaninviscidfluid

thechangeinmomentumofafluidparticle

iscausedbythebody(assumedtobegravityonly)andthenetpressureforce.3EULER’SEQUATION

INRECTANGULARCOORDINATESSYSTEM4EULER’SEQUATION

INCYLINDRICALCOORDINATESSYSTEM5EULER’SEQUATION

INSTREAMLINECOORDINATES(I)ApplyingNewton’ssecondlawinthestreamwise

(thes)directiontothefluidelementofvolumedsdndx,thenneglectingviscousforcesweobtaindzds6EULER’SEQUATION

INSTREAMLINECOORDINATES(II)Euler’sequationinthestreamwisedirectionwiththez-axisdirectedverticallyupwardsisForsteadyflow,andneglectingbodyforce,Euler’sequationinthestreamwisedirectionreducesto7EULER’SEQUATION

INSTREAMLINECOORDINATES(III)ApplyingNewton’ssecondlawinadirectionnormaltothestreamwise,thenneglectingviscousforces,weobtainForsteadyflow,theEuler’sequationnormaltoastreamlinebecomeInahorizontalplaneRVanzgnpcosgnpdndxdsadndxdscosgdsdx2dnnppdsdx2dnnpp2nn-==??-??-=-??-T=-÷???è???+-÷???è???-rrrbrrbrdzdsdndzgdndxds8SUMMARY:EULER’SEQUATIONForsteadyflow,theEuler’sequationinthestreamwisedirectionreducestoForsteadyflow,theEuler’sequationnormaltoastreamlinebecome9EULER’SEQUATION

Indication?Adecreaseinvelocityisaccompaniedbyanincreaseinpressureandconversely.Theonlyforceexperiencedbytheparticleisthenetpressureforce,sotheparticleacceleratestowardlow-pressureregionsanddecelerateswhenapproachinghigh-pressureregions.Pressureincreasesinthedirectionoutwardfromthecenterofcurvatureofthestreamwise.Theonlyforceexperiencedbytheparticleisthenetpressureforce,thepressurefieldcreatesthecentripetalacceleration.??10BERNOULLIEQUATION

AlongaStreamlineforSteadyFlow(I)Euler’sequationforsteadyflow

alongastreamlineisIntegrationofthisequationgives11BERNOULLIEQUATION

AlongaStreamlineforSteadyFlow(II)ForthespecialcaseofincompressibleflowRestrictions:Steadyflow.Incompressibleflow.Frictionlessflow.Flowalongastreamline.BERNOULLIEQUATION12Static,Stagnation,andDynamicPressure(I)Thepressure,p,whichhaveusedinderivingtheBernoulliequation,isthethermodynamicpressure;itiscommonlycalledthestaticpressure.Thestaticpressure?isthepressureseenbythefluidparticleasitmoves.Itismeasuredinaflowingfluidusingawallpressure“tap”,orastaticpressureprobe.Asmallhole,drilledcarefullyinthewall.13Static,Stagnation,andDynamicPressure(II)Neglectingelevationdifference,theBernoulliequationbecomesThestagnationpressureisobtainedwhenaflowingfluidisdeceleratedtozerospeedbyafrictionlessprocess.StagnationpressureDynamicpressurewhere14StaticandStagnationPressureMeasurementPitot-staticTube1516BERNOULLIEQUATION

ApplicationsTheBernoulliequationcanbeappliedbetweenanytwopointsonastreamlineprovidedthattheotherthreerestrictionsaresatisfied.Theresultis.Restrictions:Steadyflow.Incompressibleflow.Frictionlessflow.Flowalongastreamline.1718192021BERNOULLIEQUATION

ASANENERGYEQUATION(I)Considersteadyflowintheabsenceofshearforce.Wechooseacontrolvolumeboundedbystreamlinesalongitsperiphery.Thebasicequation:RESTRICTIONSNoShaftWorkNoShearForceWorkNoOtherWorkSteadyFlowUniformFlowandProperties22BERNOULLIEQUATION

ASANENERGYEQUATION(II)Underthoserestrictions,thebasicequationsbecomeUnderthoserestrictions,thecontinuityequation

Also23BERNOULLIEQUATION

ASANENERGYEQUATION(III)Thus,theenergyequationWithadditionalassumptionofincompressibleflow,,theenergyequationbecomesWithfurtherrestriction,,theenergyequationbecomes….24BERNOULLIEQUATION

ASANENERGYEQUATION(IV)RESTRICTIONS:NoShaftWorkNoShearForceWorkNoOtherWorkSteadyFlowUniformFlowandPropertiesIncompressibleFlowu2–u1–dQ/dm=02526ENERGYGRADELINEandHYDRAULICGRADELINE(I)Forsteady,frictionless,incompressibleflowalongastreamlinewithoutlossofmechanicalenergy,theenergyequationcanbedividedbyginordertorepresentthemechanicalenergylevelofaflowgraphically.Theheadduetolocalstaticpressure(pressureenergy)Theheadduetolocaldynamicpressure(kineticenergy)Theelevationhead(potentialenergy)Thetotalheadfortheflow27InterpretationofBernoulli’sEquation28ENERGYGRADELINEandHYDRAULICGRADELINE(II)EnergyGradeLine(EGLorEL):representsthetotalheadheight.HydraulicGradLine(HGL)height:representsthesumoftheelevationandstaticpressureheads.ThedifferenceinheightsbetweentheEGLandtheHGLrepresentsthedynamic(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論