




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§2.1SpaceLatticeⅠ.Crystalsversusnon-crystals1.ClassificationoffunctionalmaterialsChapterⅡFundamentalsofCrystallography
Lessonthree§2.1SpaceLatticeⅠ.Crystalsv1材料科學(xué)基礎(chǔ)課件22.Classificationofmaterialsbasedonstructure
Regularityinatomarrangement——periodicornot(amorphous)2.Classificationofmaterials3Crystalline:Thematerialsatomsarearranged inaperiodicfashion.Amorphous:Thematerial’satomsdonothave along-rangeorder(0.1~1nm).Singlecrystal:intheformofonecrystal
grainsPolycrystalline:
grainboundariesCrystalline:Thematerialsato4材料科學(xué)基礎(chǔ)課件5材料科學(xué)基礎(chǔ)課件6Ⅱ.Spacelattice1.
Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.
TwobasicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Ⅱ.Spacelattice2.Twobasicfe7材料科學(xué)基礎(chǔ)課件8Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements
(1)(2)(3)
a
bAlatticemaybeone,two,9Threedimensions
EachlatticepointhasidenticalsurroundingenvironmentThreedimensionsEachlattice10Ⅲ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitcell.Ⅲ.Unitcellandlatticeconsta11材料科學(xué)基礎(chǔ)課件12Howtodistinguishthesizeandshapeofthedeferentunitcell?
Thesixvariables,whicharedescribedbylatticeconstants
——
a,b,c;α,β,γHowtodistinguishthesizean13LatticeConstantsa
c
b
αβγa
c
b
αβγLatticeConstantsacbαβγa14§2.2CrystalSystem&LatticeTypes
Ifarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintocoincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.
Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.§2.2CrystalSystem&Lattice15Ⅰ.Sevencrystalsystems
Allpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagivenunitcell.Ⅰ.SevencrystalsystemsAl16SevenCrystalSystemsTriclinica≠b≠c
,α≠β≠γ≠90°Monoclinica≠b≠c
,α=β=90°≠γ
α=γ=90°≠βOrthorhombica≠b≠c
,α=β=γ=90°Tetragonala=b≠c
,α=β=γ=90°Cubica=b=c
,α=β=γ=90°Hexagonala=b≠c
,α=β=90°γ=120°Rhombohedrala=b=c
,α=β=γ≠90°SevenCrystalSystemsTriclinic17Ⅱ.14typesofBravaislattices1.DerivationofBravaislatticesBravaislatticescanbederivedbyaddingpointstothecenterofthebodyand/orexternalfacesanddeletingthoselatticeswhichareidentical.Ⅱ.14typesofBravaislattices187×4=28Deletethe14typeswhichareidentical28-14=14+++PICF7×4=28+++PICF192.14typesofBravaislatticeTricl:simple(P)Monocl:simple(P).base-centered(C)Orthor:simple(P).body-centered(I).base-centered(C).face-centered(F)Tetr:simple(P).body-centered(I)Cubic:simple(P).body-centered(I).face-centered(F)Rhomb:simple(P).Hexagonal:simple(P).2.14typesofBravaislattice20材料科學(xué)基礎(chǔ)課件21Crystalsystems(7)Latticetypes(14)PCFI
ABC1Triclinic√2Monoclinic√√or√(γ≠90°orβ≠
90°
)3Orthorhombic√√or√or√√√4Tetragonal√√5Cubic√√√6Hexagonal√7Rhombohedral√SevencrystalsystemsandfourteenlatticetypesCrystalsystemsLatticetypes(22Ⅲ.PrimitiveCellForprimitivecell,thevolumeisminimumPrimitivecellOnlyincludesonelatticepointⅢ.PrimitiveCellPrimitivecell23Ⅳ.ComplexLatticeTheexampleofcomplexlattice120o120o120oⅣ.ComplexLattice120o120o120o24ExamplesandDiscussions1.Whyarethereonly14spacelattices?
ExplainwhythereisnobasecenteredandfacecenteredtetragonalBravaislattice.ExamplesandDiscussions1.Why25P→CI→FButthevolumeisnotminimum.P→CI→FButthevolumeisno262.CriterionforchoiceofunitcellSymmetryAsmanyrightangleaspossibleThesizeofunitcellshouldbeassmallaspossible2.Criterionforchoiceofuni27Exercise1.Determinethenumberoflatticepointspercellinthecubiccrystalsystems.Ifthereisonlyoneatomlocatedateachlatticepoint,calculatethenumberofatomsperunitcell.2.DeterminetherelationshipbetweentheatomicradiusandthelatticeparameterinSC,BCC,andFCCstructureswhenoneatomislocatedateachlatticepoint.3.DeterminethedensityofBCCiron
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省白城市白城市第十四中學(xué)2025屆高考英語(yǔ)二模試卷含解析
- 上海市嘉定區(qū)封浜高中2025屆高考英語(yǔ)押題試卷含解析
- 2025年河南省安陽(yáng)一中高三沖刺模擬英語(yǔ)試卷含答案
- 蓮藕池塘施工方案
- 肺葉切除術(shù)患者的護(hù)理
- 購(gòu)房管理服務(wù)合同
- D相乳化法制備硅油乳液及其在疏水海綿上的應(yīng)用
- 基于PINN的硅單晶多場(chǎng)耦合模型構(gòu)建與求解研究
- 女子籃球?qū)m?xiàng)大學(xué)生急停跳投時(shí)ACL損傷風(fēng)險(xiǎn)研究
- 鐵碳復(fù)合載體促進(jìn)AnMBR常溫下處理生活污水的性能與機(jī)制研究
- 中國(guó)假發(fā)行業(yè)供需態(tài)勢(shì)、競(jìng)爭(zhēng)格局及投資前景分析報(bào)告(智研咨詢)
- 四川政采評(píng)審專家入庫(kù)考試基礎(chǔ)題復(fù)習(xí)測(cè)試附答案
- 一輪復(fù)習(xí)課件:《古代歐洲文明》
- 安裝懸浮地板合同范例
- 土族課件教學(xué)課件
- 團(tuán)體醫(yī)療補(bǔ)充保險(xiǎn)方案
- DB41T 1836-2019 礦山地質(zhì)環(huán)境恢復(fù)治理工程施工質(zhì)量驗(yàn)收規(guī)范
- 2024年江蘇省高考政治試卷(含答案逐題解析)
- 培訓(xùn)調(diào)查問(wèn)卷分析報(bào)告
- 肝癌肝移植中國(guó)指南解讀
- 2024版年度中華人民共和國(guó)傳染病防治法
評(píng)論
0/150
提交評(píng)論