材料科學(xué)基礎(chǔ)課件_第1頁(yè)
材料科學(xué)基礎(chǔ)課件_第2頁(yè)
材料科學(xué)基礎(chǔ)課件_第3頁(yè)
材料科學(xué)基礎(chǔ)課件_第4頁(yè)
材料科學(xué)基礎(chǔ)課件_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§2.1SpaceLatticeⅠ.Crystalsversusnon-crystals1.ClassificationoffunctionalmaterialsChapterⅡFundamentalsofCrystallography

Lessonthree§2.1SpaceLatticeⅠ.Crystalsv1材料科學(xué)基礎(chǔ)課件22.Classificationofmaterialsbasedonstructure

Regularityinatomarrangement——periodicornot(amorphous)2.Classificationofmaterials3Crystalline:Thematerialsatomsarearranged inaperiodicfashion.Amorphous:Thematerial’satomsdonothave along-rangeorder(0.1~1nm).Singlecrystal:intheformofonecrystal

grainsPolycrystalline:

grainboundariesCrystalline:Thematerialsato4材料科學(xué)基礎(chǔ)課件5材料科學(xué)基礎(chǔ)課件6Ⅱ.Spacelattice1.

Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.

TwobasicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Ⅱ.Spacelattice2.Twobasicfe7材料科學(xué)基礎(chǔ)課件8Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements

(1)(2)(3)

a

bAlatticemaybeone,two,9Threedimensions

EachlatticepointhasidenticalsurroundingenvironmentThreedimensionsEachlattice10Ⅲ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitcell.Ⅲ.Unitcellandlatticeconsta11材料科學(xué)基礎(chǔ)課件12Howtodistinguishthesizeandshapeofthedeferentunitcell?

Thesixvariables,whicharedescribedbylatticeconstants

——

a,b,c;α,β,γHowtodistinguishthesizean13LatticeConstantsa

c

b

αβγa

c

b

αβγLatticeConstantsacbαβγa14§2.2CrystalSystem&LatticeTypes

Ifarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintocoincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.

Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.§2.2CrystalSystem&Lattice15Ⅰ.Sevencrystalsystems

Allpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagivenunitcell.Ⅰ.SevencrystalsystemsAl16SevenCrystalSystemsTriclinica≠b≠c

,α≠β≠γ≠90°Monoclinica≠b≠c

,α=β=90°≠γ

α=γ=90°≠βOrthorhombica≠b≠c

,α=β=γ=90°Tetragonala=b≠c

,α=β=γ=90°Cubica=b=c

,α=β=γ=90°Hexagonala=b≠c

,α=β=90°γ=120°Rhombohedrala=b=c

,α=β=γ≠90°SevenCrystalSystemsTriclinic17Ⅱ.14typesofBravaislattices1.DerivationofBravaislatticesBravaislatticescanbederivedbyaddingpointstothecenterofthebodyand/orexternalfacesanddeletingthoselatticeswhichareidentical.Ⅱ.14typesofBravaislattices187×4=28Deletethe14typeswhichareidentical28-14=14+++PICF7×4=28+++PICF192.14typesofBravaislatticeTricl:simple(P)Monocl:simple(P).base-centered(C)Orthor:simple(P).body-centered(I).base-centered(C).face-centered(F)Tetr:simple(P).body-centered(I)Cubic:simple(P).body-centered(I).face-centered(F)Rhomb:simple(P).Hexagonal:simple(P).2.14typesofBravaislattice20材料科學(xué)基礎(chǔ)課件21Crystalsystems(7)Latticetypes(14)PCFI

ABC1Triclinic√2Monoclinic√√or√(γ≠90°orβ≠

90°

)3Orthorhombic√√or√or√√√4Tetragonal√√5Cubic√√√6Hexagonal√7Rhombohedral√SevencrystalsystemsandfourteenlatticetypesCrystalsystemsLatticetypes(22Ⅲ.PrimitiveCellForprimitivecell,thevolumeisminimumPrimitivecellOnlyincludesonelatticepointⅢ.PrimitiveCellPrimitivecell23Ⅳ.ComplexLatticeTheexampleofcomplexlattice120o120o120oⅣ.ComplexLattice120o120o120o24ExamplesandDiscussions1.Whyarethereonly14spacelattices?

ExplainwhythereisnobasecenteredandfacecenteredtetragonalBravaislattice.ExamplesandDiscussions1.Why25P→CI→FButthevolumeisnotminimum.P→CI→FButthevolumeisno262.CriterionforchoiceofunitcellSymmetryAsmanyrightangleaspossibleThesizeofunitcellshouldbeassmallaspossible2.Criterionforchoiceofuni27Exercise1.Determinethenumberoflatticepointspercellinthecubiccrystalsystems.Ifthereisonlyoneatomlocatedateachlatticepoint,calculatethenumberofatomsperunitcell.2.DeterminetherelationshipbetweentheatomicradiusandthelatticeparameterinSC,BCC,andFCCstructureswhenoneatomislocatedateachlatticepoint.3.DeterminethedensityofBCCiron

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論