




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省自貢市富順縣二中高二上數(shù)學期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點在圓上,點在直線上,則的最小值是()A. B.C. D.2.如圖,是函數(shù)的部分圖象,且關(guān)于直線對稱,則()A. B.C. D.3.一道數(shù)學試題,甲、乙兩位同學獨立完成,設(shè)命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.4.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.5.已知等差數(shù)列的前項和為,,,當取最大時的值為()A. B.C. D.6.函數(shù)的導函數(shù)為()A. B.C. D.7.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.8.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.9.下列各式正確的是()A. B.C. D.10.若向量則()A. B.3C. D.11.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.202212.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和為,則______14.某校學生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.15.平面直角坐標系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________16.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列{an}中,a1=1,且2a2是a3和4a1的等差中項.數(shù)列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an+bn}前n項和Tn.18.(12分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和19.(12分)如圖,一個湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個點、,并修建兩段直線型道路、.規(guī)劃要求,線段、上的所有點到點的距離均不小于圓的半徑.已知點到直線的距離分別為和(為垂足),測得,,(單位:百米).(1)若道路與橋垂直,求道路的長;(2)在規(guī)劃要求下,點能否選在處?并說明理由.20.(12分)已知函數(shù).(1)當時,討論的單調(diào)性;(2)當時,證明:.21.(12分)某快遞公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)在這60天中包裹件數(shù)在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應分別抽取多少件?22.(10分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.2、C【解析】先根據(jù)條件確定為函數(shù)的極大值點,得到的值,再根據(jù)圖像的單調(diào)性和導數(shù)幾何意義得到和的正負即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導數(shù)的幾何意義,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導數(shù)的幾何意義所以.即.故選:C.3、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.4、A【解析】設(shè)點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設(shè)點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.5、B【解析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【詳解】令公差為,則,解得,所以,當時,取最大值.故選:B6、B【解析】利用復合函數(shù)求導法則即可求導.【詳解】,故選:B.7、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設(shè),則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.8、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.9、C【解析】利用導數(shù)的四則運算即可求解.【詳解】對于A,,故A錯誤;對于B,,故B錯誤;對于C,,故C正確;對于D,,故D錯誤;故選:C10、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D11、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點的最短弦長,再結(jié)合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A12、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.14、①.5②.【解析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯位相減法得結(jié)果.【詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.解答題15、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:16、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負,可知,再由奇數(shù)項為負,偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知條件求出等比數(shù)列的公比,然后利用等比數(shù)列通項公式求解即可;(2)根據(jù)已知求出數(shù)列的通項公式,再結(jié)合(1)中結(jié)論并利用分組求和法求解即可.【詳解】(1)設(shè)等比數(shù)列公比為q,因為,所以,因為是和的等差中項,所以,即,解得,所以.故答案為:.(2)因為,所以為等差數(shù)列,因為,,所以公差,故.所以.故答案為:.18、(1);(2).【解析】(1)根據(jù)給定條件列式求出數(shù)列的首項即可作答.(2)由(1)的結(jié)論求出,再借助裂項相消法計算作答.【小問1詳解】因為數(shù)列是公比為2的等比數(shù)列,且是與的等差中項,則有,即,解得,所以.【小問2詳解】由(1)知,,則,即有,所以.19、(1)15(百米)(2)點選在處不滿足規(guī)劃要求,理由見解析【解析】(1)建立適當?shù)淖鴺讼?,得圓及直線的方程,進而得解.(2)不妨點選在處,求方程并求其與圓的交點,在線段上取點不符合條件,得結(jié)論.【小問1詳解】如圖,過作,垂足為.以為坐標原點,直線為軸,建立平面直角坐標系.因為為圓的直徑,,所以圓的方程為.因為,,所以,故直線的方程為,則點,的縱坐標分別為3,從而,,直線的斜率為.因為,所以直線的斜率為,直線的方程為.令,得,,所以.因此道路的長為15(百米).【小問2詳解】若點選在處,連結(jié),可求出點,又,所以線段.由解得或,故不妨取,得到在線段上的點,因為,所以線段上存在點到點的距離小于圓的半徑5.因此點選在處不滿足規(guī)劃要求.20、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【解析】(1)當時,利用求得的單調(diào)區(qū)間.(2)將問題轉(zhuǎn)化為證明,利用導數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當時,,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當時,單調(diào)遞減;當時,單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】因為,所以,要證,只需證當時,即可.,易知在上單調(diào)遞增,又,所以,且,即,當時,單調(diào)遞減;當時,單調(diào)遞增,,所以.【點睛】在證明不等式的過程中,直接證明困難時,可考慮證明和兩個不等式成立,從而證得成立.21、(1)平均數(shù)和中位數(shù)都為260件;(2)在的件數(shù)為,在的件數(shù)為.【解析】(1)由每組頻率乘以組中值相加即可得平均數(shù),設(shè)中位數(shù)為,由落在區(qū)間內(nèi)的頻率為0.5可得結(jié)果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結(jié)果.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;設(shè)中位數(shù)為,易知,則,解得.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)件數(shù)在,的頻率分別為0.1,0.5頻率之比為1:5,所抽取的30件中,在的件數(shù)為,在的件數(shù)為.22、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司職業(yè)鑒定活動方案
- 公司新年拍照策劃方案
- 公司獻血公益活動策劃方案
- 公司種植綠植活動方案
- 公司特賣現(xiàn)場活動方案
- 公司電商短視頻策劃方案
- 公司溫泉度假活動方案
- 公司臘八節(jié)慰問活動方案
- 公司水槍大戰(zhàn)活動方案
- 公司相親會會活動方案
- 2025年河南省高考物理真題(解析版)
- 2025中國心肌病綜合管理指南要點解讀課件
- 7數(shù)滬科版期末考試卷-2024-2025學年七年級(初一)數(shù)學下冊期末考試模擬卷03
- 涼山州木里縣選聘社區(qū)工作者筆試真題2024
- 2025年中國太平洋人壽保險股份有限公司勞動合同
- 配電線路高級工練習試題附答案
- 護士N2理論考試試題及答案
- 2025年河北省中考麒麟卷地理(二)
- 公共組織績效評估-形考任務(wù)一(占10%)-國開(ZJ)-參考資料
- GB/T 45439-2025燃氣氣瓶和燃氣瓶閥溯源二維碼應用技術(shù)規(guī)范
- 臺球廳股東合同范例
評論
0/150
提交評論