




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆浙江省稽陽(yáng)聯(lián)誼學(xué)校高二上數(shù)學(xué)期末監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.2.若命題為“,”,則為()A., B.,C., D.,3.已知,則()A. B.C. D.4.已知,,則下列結(jié)論一定成立的是()A. B.C. D.5.在等差數(shù)列中,已知,,則使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為()A.6 B.7C.9 D.106.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.7.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點(diǎn),且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.8.若雙曲線經(jīng)過(guò)點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.9.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.510.王昌齡是盛唐著名的邊塞詩(shī)人,被譽(yù)為“七絕圣手”,其《從軍行》傳誦至今“青海長(zhǎng)云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要11.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,5,11,21,37,61,則該數(shù)列的第7項(xiàng)為()A.95 B.131C.139 D.14112.某汽車制造廠分別從A,B兩類輪胎中各隨機(jī)抽取了6個(gè)進(jìn)行測(cè)試,下面列出了每一個(gè)輪胎行駛的最遠(yuǎn)里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據(jù)以上數(shù)據(jù),下列說(shuō)法正確的是()A.A類輪胎行駛的最遠(yuǎn)里程的眾數(shù)小于B類輪胎行駛的最遠(yuǎn)里程的眾數(shù)B.A類輪胎行駛的最遠(yuǎn)里程的極差等于B類輪胎行駛的最遠(yuǎn)里程的極差C.A類輪胎行駛的最遠(yuǎn)里程的平均數(shù)大于B類輪胎行駛的最遠(yuǎn)里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定二、填空題:本題共4小題,每小題5分,共20分。13.橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為_(kāi)_____.14.如圖,正方形ABCD的邊長(zhǎng)為8,取正方形ABCD各邊的中點(diǎn)E,F(xiàn),G,H,作第2個(gè)正方形EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL.依此方法一直繼續(xù)下去.①?gòu)恼叫蜛BCD開(kāi)始,第7個(gè)正方形的邊長(zhǎng)為_(kāi)__;②如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么作到第n個(gè)正方形,這n個(gè)正方形的面積之和為_(kāi)__.15.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計(jì)算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點(diǎn),,,,若,則_________16.橢圓的焦距為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某市共有居民60萬(wàn)人,為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)18.(12分)已知離心率為的橢圓經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)若不過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),求面積的最大值.19.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線l與橢圓E交于A,B兩點(diǎn),判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.20.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:21.(12分)已知拋物線C:焦點(diǎn)F的橫坐標(biāo)等于橢圓的離心率.(1)求拋物線C的方程;(2)過(guò)(1,0)作直線l交拋物線C于A,B兩點(diǎn),判斷原點(diǎn)與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.22.(10分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意首先畫(huà)出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點(diǎn)A處取得最大值,聯(lián)立直線方程:,可得點(diǎn)A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點(diǎn)睛】方法點(diǎn)睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最大,在y軸截距最小時(shí),z值最??;當(dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最小,在y軸上截距最小時(shí),z值最大.2、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B3、C【解析】取中間值,化成同底利用單調(diào)性比較可得.【詳解】,,,故,故選:C4、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因?yàn)?,所以,又,所?故選:B.5、D【解析】根據(jù)等差數(shù)列的性質(zhì)及等差中項(xiàng)結(jié)合前項(xiàng)和公式求得,,從而得出結(jié)論.【詳解】,,,,,,,使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為10,故選:D.6、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.7、A【解析】由題意推出平面,即平面,,將此三棱錐補(bǔ)成正方體,則它們有相同的外接球,正方體的對(duì)角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點(diǎn),∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長(zhǎng)交與點(diǎn),∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因?yàn)镾?ABC是正三棱錐。所以,以,,為從同一定點(diǎn)出發(fā)的正方體三條棱,將此三棱錐補(bǔ)成以正方體,則它們有相同的外接球,正方體的體對(duì)角線就是球的直徑,,所以.故選:A.8、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過(guò)的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過(guò)點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A9、C【解析】畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】作出可行域如圖所示,把目標(biāo)函數(shù)轉(zhuǎn)化為,平移,經(jīng)過(guò)點(diǎn)時(shí),縱截距最大,所以的最大值為4.故選:C10、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過(guò)來(lái)“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過(guò)來(lái)“不還”的原因有多種,比如戰(zhàn)死沙場(chǎng);即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B11、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個(gè)數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個(gè)等差數(shù)列,設(shè)原數(shù)列的第7項(xiàng)為,則,解得,所以原數(shù)列的第7項(xiàng)為95,故選:A12、D【解析】根據(jù)眾數(shù)、極差、平均數(shù)和方差的定義以及計(jì)算公式即可求解.【詳解】解:對(duì)A:A類輪胎行駛的最遠(yuǎn)里程的眾數(shù)為99,B類輪胎行駛的最遠(yuǎn)里程的眾數(shù)為95,選項(xiàng)A錯(cuò)誤;對(duì)B:A類輪胎行駛的最遠(yuǎn)里程的極差為13,B類輪胎行駛的最遠(yuǎn)里程的極差為14,選項(xiàng)B錯(cuò)誤對(duì)C:A類輪胎行駛的最遠(yuǎn)里程的平均數(shù)為,B類輪胎行駛的最遠(yuǎn)里程的平均數(shù)為,選項(xiàng)C錯(cuò)誤對(duì)D:A類輪胎行駛的最遠(yuǎn)里程的方差為,B類輪胎行駛的最遠(yuǎn)里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項(xiàng)D正確故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓定義求出其長(zhǎng)半軸長(zhǎng),再結(jié)合焦點(diǎn)坐標(biāo)即可計(jì)算作答.【詳解】因橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則該橢圓長(zhǎng)半軸長(zhǎng),而半焦距,于是得短半軸長(zhǎng)b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:14、①.1②.【解析】根據(jù)題意,正方形邊長(zhǎng)成等比數(shù)列,正方形的面積等于邊長(zhǎng)的平方可得,然后根據(jù)等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式即可求解.【詳解】設(shè)第n個(gè)正方形的邊長(zhǎng)為,第n個(gè)正方形的面積為,則第n個(gè)正方形的對(duì)角線長(zhǎng)為,所以第n+1個(gè)正方形的邊長(zhǎng)為,,∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,,∴,即第7個(gè)正方形的邊長(zhǎng)為1;∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,故答案為:1;.15、【解析】建立空間直角坐標(biāo)系,利用空間向量可以解決問(wèn)題.【詳解】設(shè),如下圖所示,建立空間直角坐標(biāo)系,,,,,,則所以又因?yàn)樗怨蚀鸢笧椋?6、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長(zhǎng)方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對(duì)應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫(xiě)出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問(wèn)1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問(wèn)2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.18、(1);(2).【解析】(1)根據(jù),可設(shè),,求出,得到橢圓的方程,代入點(diǎn)的坐標(biāo),求出,即可得出結(jié)果.(2)設(shè)出點(diǎn),的坐標(biāo),直線與橢圓方程聯(lián)立,利用韋達(dá)定理求出弦長(zhǎng),由點(diǎn)到直線的距離公式,三角形的面積公式及基本不等式可得結(jié)論.【詳解】(1)因?yàn)?,所以設(shè),,則,橢圓的方程為.代入點(diǎn)的坐標(biāo)得,,所以橢圓的方程為.(2)設(shè)點(diǎn),的坐標(biāo)分別為,,由,得,即,,,,.,點(diǎn)到直線的距離,的面積,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.所以當(dāng)時(shí),面積的最大值為.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程和性質(zhì),直線與橢圓相交問(wèn)題.屬于中檔題.19、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長(zhǎng)短半軸長(zhǎng)即可代入計(jì)算作答.(2)當(dāng)直線l的斜率存在時(shí),設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量積運(yùn)算,推理計(jì)算作答.【小問(wèn)1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時(shí),當(dāng)直線l的斜率不存在時(shí),由對(duì)稱性不妨令,,,當(dāng)時(shí),,即當(dāng)時(shí),過(guò)點(diǎn)的任意直線l與橢圓E交于A,B兩點(diǎn),恒有,所以存在滿足條件.【點(diǎn)睛】方法點(diǎn)睛:求定值問(wèn)題常見(jiàn)的方法:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值20、(1);;(2)證明見(jiàn)解析.【解析】(1)根據(jù)導(dǎo)數(shù)幾何意義可知,解方程求得,進(jìn)而得到切線方程;(2)當(dāng)時(shí),由,知不等式成立;當(dāng)時(shí),令,利用導(dǎo)數(shù)可求得在上單調(diào)遞增,從而得到,由此可得結(jié)論.【小問(wèn)1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問(wèn)2詳解】要證,即證;①當(dāng)時(shí),,,,即,;②當(dāng)時(shí),令,,,當(dāng)時(shí),,,,,即,在上單調(diào)遞增,,在上單調(diào)遞增,,即在上恒成立;綜上所述:.【點(diǎn)睛】思路點(diǎn)睛:本題第二問(wèn)考查利用導(dǎo)數(shù)證明不等式的問(wèn)題,解題的基本思路是將問(wèn)題轉(zhuǎn)化為函數(shù)最值的求解問(wèn)題;通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結(jié)論.21、(1);(2)原點(diǎn)在以線段AB為直徑的圓上,詳見(jiàn)解析.【解析】(1)利用橢圓方程可得其離心率,進(jìn)而可求拋物線的焦點(diǎn),即求;(2)設(shè)直線l的方程為,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 細(xì)菌世界歷險(xiǎn)記灰塵的旅行讀書(shū)分享
- 2024年油品脫砷特種催化劑項(xiàng)目資金籌措計(jì)劃書(shū)代可行性研究報(bào)告
- 2024年抗倍特板項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年NITI基記憶合金材料資金需求報(bào)告代可行性研究報(bào)告
- MySQL數(shù)據(jù)庫(kù)應(yīng)用技術(shù)課件:數(shù)據(jù)表操作
- 職業(yè)資格-基本制度與政策(含相關(guān)知識(shí))真題庫(kù)-15
- 會(huì)計(jì)實(shí)務(wù)基礎(chǔ)能力測(cè)試試題及答案
- 2025年財(cái)務(wù)管理專題研究試題及答案
- 知道思修考試試題及答案
- 單招面試題目及答案
- Z20名校聯(lián)盟(浙江省名校新高考研究聯(lián)盟)2025屆高三第一次聯(lián)考數(shù)學(xué)試題卷
- 就業(yè)協(xié)議書(shū)范本(完整版)
- 英語(yǔ)漫談中國(guó)故事智慧樹(shù)知到答案2024年上海立達(dá)學(xué)院
- 小學(xué)英語(yǔ)語(yǔ)法專題訓(xùn)練:名詞所有格(含答案)
- 公司食堂外包項(xiàng)目投標(biāo)方案(技術(shù)方案)
- 2024新蘇教版一年級(jí)數(shù)學(xué)上冊(cè)第二單元第1課《認(rèn)識(shí)6~9》教案
- GB/T 35170-2024水泥窯協(xié)同處置的生活垃圾預(yù)處理可燃物
- DL∕T 5161.5-2018 電氣裝置安裝工程質(zhì)量檢驗(yàn)及評(píng)定規(guī)程 第5部分:電纜線路施工質(zhì)量檢驗(yàn)
- 煤礦重要崗位人員《水泵司機(jī)》復(fù)訓(xùn)機(jī)考題庫(kù)(含答案)
- AQ 1020-2006 煤礦井下粉塵綜合防治技術(shù)規(guī)范(正式版)
- 綠化養(yǎng)護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論