2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省磐安縣第二中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導(dǎo)函數(shù),則=A. B.C. D.2.已知函數(shù),,若對任意的,,都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.函數(shù)在單調(diào)遞增的一個必要不充分條件是()A. B.C. D.4.曲線上的點(diǎn)到直線的最短距離是()A. B.C. D.15.已知拋物線的焦點(diǎn)為F,點(diǎn)P為該拋物線上的動點(diǎn),若,則當(dāng)最大時,()A. B.1C. D.26.直線l:的傾斜角為()A. B.C. D.7.拋擲兩枚硬幣,若記出現(xiàn)“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.8.設(shè)直線,.若,則的值為()A.或 B.或C. D.9.已知,,則等于()A.2 B.C. D.10.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限11.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.12.過點(diǎn),且斜率為2的直線方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校學(xué)生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.14.設(shè)a為實(shí)數(shù),若直線與直線平行,則a值為______.15.某高中高二年級學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進(jìn)行了一次測試,總分為100分.現(xiàn)用分層隨機(jī)抽樣方法從學(xué)生的數(shù)學(xué)成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績樣本數(shù)據(jù)中,隨機(jī)抽取兩個進(jìn)調(diào)查,求調(diào)查對象來自不同分組的概率.16.曲線在點(diǎn)處的切線方程為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的大小18.(12分)已知橢圓C:()的離心率為,并且經(jīng)過點(diǎn),(1)求橢圓C的方程;(2)設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為,點(diǎn)為橢圓C上任意一點(diǎn),直線的斜率分別為,,求證:為定值19.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)記,其中表示不超過最大整數(shù),如,.(i)求、、;(ii)求數(shù)列的前項(xiàng)的和.20.(12分)已知拋物線C:上一點(diǎn)與焦點(diǎn)F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點(diǎn),求直線AM,BM的斜率之積21.(12分)已知數(shù)列是等差數(shù)列,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,且,,.(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知的內(nèi)角A,B,C的對邊分別為a,b,c.(1)若,,,求邊長c;(2),,,求角C.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由歸納推理可知偶函數(shù)的導(dǎo)數(shù)是奇函數(shù),因?yàn)槭桥己瘮?shù),則是奇函數(shù),所以,應(yīng)選答案D2、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.3、D【解析】求出導(dǎo)函數(shù),由于函數(shù)在區(qū)間單調(diào)遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上恒成立,而在區(qū)間上單調(diào)遞減,選項(xiàng)中只有是的必要不充分條件.選項(xiàng)AC是的充分不必要條件,選項(xiàng)B是充要條件.故選:D4、B【解析】先求與平行且與相切的切線切點(diǎn),再根據(jù)點(diǎn)到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時,即切點(diǎn)坐標(biāo)為P(1,0),則點(diǎn)(1,0)到直線的距離就是線上的點(diǎn)到直線的最短距離,∴點(diǎn)(1,0)到直線的距離為:,∴曲線上的點(diǎn)到直線l:的距離的最小值為.故選:B5、B【解析】根據(jù)拋物線的定義,結(jié)合換元法、配方法進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)P為該拋物線上的動點(diǎn),所以點(diǎn)P的坐標(biāo)設(shè)為,拋物線的焦點(diǎn)為F,所以,拋物線的準(zhǔn)線方程為:,因此,令,,當(dāng)時,即當(dāng)時,有最大值,最大值為1,此時.故選:B6、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.7、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計算公式,把,,算出來,判斷四個選項(xiàng)的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A8、A【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得或.故選:A.9、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D10、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.11、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因?yàn)樵陔p曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B12、A【解析】由直線點(diǎn)斜式計算出直線方程.【詳解】因?yàn)橹本€過點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡單.二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯位相減法得結(jié)果.【詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項(xiàng)為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.解答題14、【解析】根據(jù)兩直線平行得到,解方程組即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:.15、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應(yīng)區(qū)間的中點(diǎn)75;平均數(shù);因?yàn)?,所以中位?shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.16、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取中點(diǎn)連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進(jìn)而得到二面角大小.【小問1詳解】如上圖,取中點(diǎn)連接,連接,均為線段中點(diǎn),且,又G是的中點(diǎn),且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點(diǎn),面,面面又面.【小問2詳解】建立如圖坐標(biāo)系,設(shè)面的法向量為設(shè)面的法向量為兩個法向量的夾角余弦值為:,由圖知兩個面的二面角為鈍角,故夾角為.18、(1)(2)證明見解析【解析】(1)根據(jù)題意可列出關(guān)于的三個方程,解出即可得到橢圓C的方程;(2)根據(jù)對稱可得點(diǎn)坐標(biāo),再根據(jù)斜率公式可得,然后由點(diǎn)為橢圓C上的點(diǎn)得,代入化簡即可求出為定值【小問1詳解】由題意解得,.所以橢圓C的方程為.【小問2詳解】因?yàn)辄c(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為,所以的坐標(biāo)為.,,所以,又因?yàn)辄c(diǎn)為橢圓C上的點(diǎn),所以.19、(1);(2)(i),,;(ii).【解析】(1)推導(dǎo)出數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,即可求得數(shù)列的通項(xiàng)公式;(2)(i)利用對數(shù)函數(shù)的單調(diào)性結(jié)合題中定義可求得、、的值;(ii)分別解不等式、、,結(jié)合題中定義可求得數(shù)列的前項(xiàng)的和.【小問1詳解】解:因?yàn)?,,則,可得,,可得,以此類推可知,對任意的,.由,變形為,是一個以為公差的等差數(shù)列,且首項(xiàng)為,所以,,因此,.【小問2詳解】解:(i),則,,則,故,,則,故;(ii),當(dāng)時,即當(dāng)時,,當(dāng)時,即當(dāng)時,,當(dāng)時,即當(dāng)時,,因此,數(shù)列的前項(xiàng)的和為.20、(1)(2)【解析】(1)結(jié)合拋物線的定義以及點(diǎn)坐標(biāo)求得以及.(2)求得的坐標(biāo),由此求得直線AM,BM的斜率之積.【小問1詳解】依題意拋物線C:上一點(diǎn)與焦點(diǎn)F的距離為,根據(jù)拋物線的定義可知,將點(diǎn)坐標(biāo)代入拋物線方程得.【小問2詳解】由(1)得拋物線方程為,,不妨設(shè)A在B下方,所以.21、(1),;(2),.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論