北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市首師附2024屆高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若在直線上,則直線的一個方向向量為()A. B.C. D.2.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點M(x,y)的軌跡為()A. B.C. D.3.某中學(xué)為了解高三男生的體能情況,通過隨機(jī)抽樣,獲得了200名男生的100米體能測試成績(單位:秒),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.規(guī)定成績低于13秒為優(yōu),成績高于14.8秒為不達(dá)標(biāo).由直方圖推斷,下列選項錯誤的是()A.直方圖中a的值為0.40B.由直方圖估計本校高三男生100米體能測試成績的眾數(shù)為13.75秒C.由直方圖估計本校高三男生100米體能測試成績?yōu)閮?yōu)的人數(shù)為54D.由直方圖估計本校高三男生100米體能測試成績?yōu)椴贿_(dá)標(biāo)的人數(shù)為184.若拋物線上一點到焦點的距離為5,則點的坐標(biāo)為()A. B.C. D.5.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.46.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.7.函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是A. B.C. D.8.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°9.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則10.設(shè)正方體的棱長為,則點到平面的距離是()A. B.C. D.11.一個盒子里有3個分別標(biāo)有號碼為1,2,3小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取2次,則在兩次取得小球中,標(biāo)號最大值是3的概率為()A. B.C. D.12.設(shè)命題,,則為().A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________14.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________15.設(shè),為實數(shù),已知經(jīng)過點的橢圓與雙曲線有相同的焦點,則___________.16.一條光線經(jīng)過點射到直線上,被反射后經(jīng)過點,則入射光線所在直線的方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點),求18.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面19.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.20.(12分)已知雙曲線的右焦點與拋物線的焦點相同,且過點.(1)求雙曲線漸近線方程;(2)求拋物線的標(biāo)準(zhǔn)方程.21.(12分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k22.(10分)已知函數(shù).(1)當(dāng)時,求函數(shù)在時的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D2、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運(yùn)算以及化簡公式的應(yīng)用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡即可.3、D【解析】根據(jù)頻率之和為求得,結(jié)合眾數(shù)、頻率等知識對選項進(jìn)行分析,從而確定正確答案.【詳解】,解得,A選項正確.眾數(shù)為,B選項正確.成績低于秒的頻率為,人數(shù)為,所以C選項正確.成績高于的頻率為,人數(shù)為人,D選項錯誤.故選:D4、C【解析】設(shè),由拋物線的方程可得準(zhǔn)線方程為,由拋物線的性質(zhì)到焦點的距離等于到準(zhǔn)線的距離,求出,解出縱坐標(biāo),進(jìn)而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標(biāo),故選:C.5、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A6、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.7、D【解析】原函數(shù)先減再增,再減再增,且位于增區(qū)間內(nèi),因此選D【名師點睛】本題主要考查導(dǎo)數(shù)圖象與原函數(shù)圖象的關(guān)系:若導(dǎo)函數(shù)圖象與軸的交點為,且圖象在兩側(cè)附近連續(xù)分布于軸上下方,則為原函數(shù)單調(diào)性的拐點,運(yùn)用導(dǎo)數(shù)知識來討論函數(shù)單調(diào)性時,由導(dǎo)函數(shù)的正負(fù),得出原函數(shù)的單調(diào)區(qū)間8、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補(bǔ)角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補(bǔ)角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補(bǔ)角,當(dāng)∠EGF=60°時,∠FEG=60°,當(dāng)∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B9、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關(guān)系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.10、D【解析】建立空間直角坐標(biāo)系,根據(jù)空間向量所學(xué)點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標(biāo)系,以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點到平面的距離為,所以,故選:D.11、C【解析】求出兩次取球都沒有取到3的概率,再利用對立事件的概率公式計算作答.【詳解】依題意,每次取到標(biāo)號為3的球的事件為A,則,且每次取球是相互獨(dú)立的,在兩次取得小球中,標(biāo)號最大值是3的事件M,其對立事件是兩次都沒有取到標(biāo)號為3的球的事件,,則有,所以在兩次取得小球中,標(biāo)號最大值是3的概率為.故選:C12、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因為命題,,所以為,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:314、【解析】利用等價轉(zhuǎn)化的思想轉(zhuǎn)化為點到面的距離,作,利用線面垂直的判定定理證明平面,然后計算使用等面積法,可得結(jié)果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價于點到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點到平面距離為由,所以又,所以在中,又故答案為:【點睛】本題考查線面垂直的綜合應(yīng)用以及等面積法求高,重點在于使用等價轉(zhuǎn)換的思想,考驗理解能力,分析問題的能力,屬中檔題.15、1【解析】由點P在橢圓上,可得的值,再根據(jù)橢圓與雙曲線有相同的焦點即可求解.【詳解】解:因為點在橢圓上,所以,解得,所以橢圓方程為,又橢圓與雙曲線有相同的焦點,所以,解得,故答案為:1.16、【解析】先求點關(guān)于直線的對稱點,連接,則直線即為所求.【詳解】設(shè)點關(guān)于直線的對稱點為,則,解得,所以,又點,所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)即可求出;(2)設(shè),聯(lián)立與橢圓方程,求出,再根據(jù)平行四邊形的性質(zhì)求出點的坐標(biāo),然后由點G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點為,∴,∵軸,且,∴,∴,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè),將直線代入,消去y并整理得,由,得.(*)由根與系數(shù)的關(guān)系可得,∴,∵四邊形為平行四邊形,∴,得,將G點坐標(biāo)代人橢圓C的方程得,滿足(*)式∴18、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.19、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點,分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標(biāo)原點,分別為軸的空間直角坐標(biāo)系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標(biāo),,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.20、(1)(2)【解析】(1)將已知點代入雙曲線方程,然后可得;(2)由雙曲線右焦點與拋物線的焦點相同可解.【小問1詳解】因為雙曲線過點,所以所以,得又因為,所以所以雙曲線的漸近線方程【小問2詳解】由(1)得所以所以雙曲線的右焦點是所以拋物線的焦點是所以,所以所以拋物線的標(biāo)準(zhǔn)方程21、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點即知橢圓焦點,結(jié)合橢圓短軸長,可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長以及到直線PQ的距離,進(jìn)而表示出,由題意得關(guān)于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點坐標(biāo)為,由此可知橢圓焦點也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.22、(1)最大值為9,最小值為;(2).【解析】(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而確定在的極值、端點值,比較它們的大小即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論