




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆天津市武清區(qū)等五區(qū)縣高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的焦距是()A.4 B.C.8 D.2.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.3.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.4.直線與曲線相切于點,則()A. B.C. D.5.若數(shù)列等差數(shù)列,a1=1,,則a5=()A. B.C. D.6.等差數(shù)列中,,則前項的和()A. B.C. D.7.雙曲線的焦點到漸近線的距離為()A. B.C. D.8.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.9.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.10.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.11.已知橢圓,則下列結(jié)論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為12.橢圓與雙曲線有公共的焦點、,與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體的棱長為1,P為BC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號).①當(dāng)時,S為四邊形;②當(dāng)時,S為等腰梯形;③當(dāng)時,S與的交點R滿足;④當(dāng)時,S為六邊形;⑤當(dāng)時,S的面積為.14.若直線與函數(shù)的圖象有三個交點,則實數(shù)a的取值范圍是_________15.已知隨機(jī)變量X服從正態(tài)分布,若,則______16.我國古代,9是數(shù)字之極,代表尊貴之意,所以中國古代皇家建筑中包含許多與9相關(guān)的設(shè)計.例如,北京天壇圓丘的底面由扇環(huán)形的石板鋪成(如圖),最高一層是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊,共有9圈,則前9圈的石板總數(shù)是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由18.(12分)已知的展開式中二項式系數(shù)和為16(1)求展開式中二項式系數(shù)最大的項;(2)設(shè)展開式中的常數(shù)項為p,展開式中所有項系數(shù)的和為q,求19.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.20.(12分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應(yīng)黨和國家的號召,通過“增強(qiáng)防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達(dá)對建黨100周年以來的豐功偉績的傳頌.教務(wù)處為了解學(xué)生對相關(guān)知識的掌握情況,隨機(jī)抽取了100名學(xué)生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學(xué)校參與省里的此類比賽,你認(rèn)為怎么選最合理,并說明理由21.(12分)已知是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)數(shù)列通項公式為,求數(shù)列的前n項和.22.(10分)已知橢圓的長軸長與短軸長之比為2,、分別為其左、右焦點.請從下列兩個條件中選擇一個作為已知條件,完成下面的問題:①過點且斜率為1的直線與橢圓E相切;②過且垂直于x軸的直線與橢圓在第一象限交于點P,且的面積為.(只能從①②中選擇一個作為已知)(1)求橢圓E的方程;(2)過點的直線l與橢圓E交于A,B兩點,與直線交于H點,若,.證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎(chǔ)題.2、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關(guān)系時,往往結(jié)合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.3、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A4、A【解析】直線與曲線相切于點,可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點睛】本題考查了根據(jù)切點求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計算能力,屬于中檔題.5、B【解析】令、可得等差數(shù)列的首項和第三項,即可求出第五項,從而求出.【詳解】令得,令得,所以數(shù)列的公差為,所以,解得,故選:B.6、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.7、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點坐標(biāo)以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標(biāo)為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點坐標(biāo).8、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.9、A【解析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.10、B【解析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.11、D【解析】根據(jù)已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D12、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實軸長為,因為與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①②③⑤【解析】①由如圖當(dāng)點向移動時,滿足,只需在上取點滿足,即可得截面為四邊形,如圖所示,是四邊形,故①正確;②當(dāng)時,即為中點,此時可得PQ∥AD,AP=QD==,故可得截面APQD為等腰梯形,等腰梯形,故②正確;③當(dāng)時,如圖,延長至,使,連接交于,連接交于,連接,可證,由∽,可得,故可得,故③正確;④由③可知當(dāng)時,只需點上移即可,此時的截面形狀仍然如圖所示的,如圖是五邊形,故④不正確;⑤當(dāng)時,與重合,取的中點,連接,可證,且,可知截面為為菱形,故其面積為,如圖是菱形,面積為,故⑤正確,故答案為①②③⑤考點:正方體的性質(zhì).14、【解析】求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號,得出原函數(shù)的單調(diào)性和極值,由此可求得答案.【詳解】解:因為函數(shù),則,所以當(dāng)或時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增,所以當(dāng)時,函數(shù)取得極小值,當(dāng)時,函數(shù)取得極大值,因為直線與函數(shù)的圖象有三個交點,所以實數(shù)a的取值范圍是,故答案為:.15、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.16、405【解析】前9圈的石板數(shù)依次組成一個首項為9,公差為9的等差數(shù)列,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個法向量,再由求解;(2)假設(shè)存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.18、(1)(2)【解析】(1)由二項式系數(shù)和的性質(zhì)得出,再由性質(zhì)求出展開式中二項式系數(shù)最大的項;(2)由通項得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展開式中二項式系數(shù)最大的項為;【小問2詳解】,其展開式的通項為,令,得∴常數(shù)項令,可得展開式中所有項系數(shù)的和為,∴19、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.20、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,即可分析中位數(shù)所在區(qū)間.(2)計算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績在區(qū)間上的頻率為,,所以中位數(shù)所在區(qū)間,【小問2詳解】選成績最好的同學(xué)去參賽,分?jǐn)?shù)在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)21、(1);(2).【解析】(1)設(shè)的公比為,利用基本量運算求出公比,可得數(shù)列的通項公式;(2)利用錯位相減法計算出數(shù)列的前n項和【詳解】(1)設(shè)的公比為,由題意知:,.又,解得,,所以.(2).令,則,因此,又,兩式相減得所以.【點睛】方法點睛:本題考查等比數(shù)列的通項公式,考查數(shù)列的求和,數(shù)列求和的方法總結(jié)如下:
公式法,利用等差數(shù)列和等比數(shù)列的求和公式進(jìn)行計算即可;
裂項相消法,通過把數(shù)列的通項公式拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求出數(shù)列的和;
錯位相減法,當(dāng)數(shù)列的通項公式由一個等差數(shù)列與一個等比數(shù)列的乘積構(gòu)成時使用此方法;
倒序相加法,如果一個數(shù)列滿足首末兩項等距離的兩項之和相等,可以使用此方法求和22、(1)(2)證明見解析【解析】(1)選①:直線與橢圓聯(lián)立,利用判別式為0求解;選②:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年地鐵隧道二維位移自動監(jiān)測系統(tǒng)項目建議書
- 以學(xué)生為中心的教育心理學(xué)課堂實踐
- 智慧城市安防升級保障公共安全技術(shù)合作新篇章
- 提升學(xué)生自主學(xué)習(xí)動力的教育心理學(xué)方法論
- 數(shù)字化校園教育園區(qū)的智能升級
- 商業(yè)教育中技術(shù)應(yīng)用的新趨勢
- 教育心理學(xué)在個人自學(xué)策略中的應(yīng)用
- 教育大數(shù)據(jù)下的學(xué)生個性化發(fā)展研究
- 2025屆河北省秦皇島市盧龍中學(xué)物理高二下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 學(xué)習(xí)動力與學(xué)業(yè)成就的關(guān)系研究
- 2025年中考物理真題完全解讀(湖北省卷)
- 宿舍清潔服務(wù)方案(3篇)
- 校園清廉建設(shè)活動方案
- 總經(jīng)理半年度總結(jié)述職報告
- 韶光新豐縣豐城街道辦事處招聘執(zhí)法輔助人員筆試真題2024
- 檢查檢驗結(jié)果互認(rèn)工作管理制度
- 硬膜外血腫的護(hù)理常規(guī)
- 光伏電站安全生產(chǎn)管理制度匯編
- 農(nóng)村小學(xué)生科技活動方案
- 電腦設(shè)備報廢管理制度
- 精神科護(hù)理進(jìn)修總結(jié)
評論
0/150
提交評論