




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省銀川二中2023年高二數(shù)學第一學期期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.2.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.3.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.4.已知直線與直線垂直,則()A. B.C. D.35.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.6.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要7.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.818.函數(shù)的導函數(shù)為()A. B.C. D.9.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.10.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.211.已知且,則的值為()A.3 B.4C.5 D.612.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.4952二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數(shù)和為_________14.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.15.拋物線的焦點坐標為__________16.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個焦點坐標為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設(shè)橢圓上一點R的橫坐標為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.18.(12分)一個小島的周圍有環(huán)島暗礁,暗礁分布在以小島中心為圓心,半徑為的圓形區(qū)域內(nèi)(圓形區(qū)域的邊界上無暗礁),已知小島中心位于輪船正西處,港口位于小島中心正北處.(1)若,輪船直線返港,沒有觸礁危險,求的取值范圍?(2)若輪船直線返港,且必須經(jīng)過小島中心東北方向處補水,求的最小值.19.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.20.(12分)已知拋物線過點.(1)求拋物線方程;(2)若直線與拋物線交于兩點兩點在軸的兩側(cè),且,求證:過定點.21.(12分)設(shè)數(shù)列是公比為q的等比數(shù)列,其前n項和為(1)若,,求數(shù)列的前n項和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對所構(gòu)成的集合,22.(10分)已知點,(1)若過點P作的切線只有一條,求實數(shù)的值及切線方程;(2)過點P作斜率為1的直線l與相交于M,N兩點,當面積最大時,求實數(shù)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D2、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以O(shè)A為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以O(shè)A為直徑的圓上,而以O(shè)A為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D3、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A4、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.5、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題6、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當時,與平行,當時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B7、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關(guān)系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A8、B【解析】利用復(fù)合函數(shù)求導法則即可求導.【詳解】,故選:B.9、D【解析】設(shè)切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉(zhuǎn)化為對任意點恒成立,可得,解出,從而求出答案【詳解】設(shè)切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.10、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C11、C【解析】由空間向量數(shù)量積的坐標運算求解【詳解】由已知,解得故選:C12、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:14、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)15、【解析】化成標準形式,結(jié)合焦點定義即可求解.【詳解】由,得,故拋物線的焦點坐標為故答案為:16、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關(guān)系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計算出AB的長.(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點P坐標,同理可得點Q坐標,計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點,直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點,依題意,設(shè)直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設(shè)點,則有,顯然直線QR的斜率為-t,設(shè)點,同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點睛】方法點睛:求橢圓的標準方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設(shè)出橢圓的標準方程,結(jié)合已知條件求出a,b;若焦點位置不明確,則需要分焦點在x軸上和y軸上兩種情況討論.18、(1)(2)120【解析】(1)建立平面直角坐標系設(shè)直線方程,根據(jù)點到直線的距離公式可得;(2)先求補水點的坐標,根據(jù)直線過該點,結(jié)合所求,根據(jù)基本不等式可得.【小問1詳解】根據(jù)題意,以小島中心為原點,建立平面直角坐標系,當時,則輪船返港的直線為,因為沒有觸礁危險,所以原點到的距離,解得.【小問2詳解】根據(jù)題意可得,,點C在直線上,故點C,設(shè)輪船返港的直線是,則,所以.當且僅當時取到最小值.19、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因為,所以命題為真命題.20、(1);(2)證明見解析.【解析】(1)運用代入法直接求解即可;(2)設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合一元二次方程根與系數(shù)關(guān)系、平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設(shè),,∴OA→?因為直線與拋物線交于兩點兩點在軸的兩側(cè),所以,即過定點.【點睛】關(guān)鍵點睛:運用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結(jié)果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計算可解得,進而計算可得,即可判斷結(jié)果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對所構(gòu)成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項為公差為的等差數(shù)列,數(shù)列的前n項和.【小問2詳解】,,成等差數(shù)列,+=2,當時,+=,2,不符題意舍去,當時,.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國反向噴射過濾器行業(yè)發(fā)展動態(tài)與應(yīng)用前景預(yù)測報告
- 2025-2030中國農(nóng)用塑料薄膜行業(yè)運營形勢及需求規(guī)模預(yù)測報告
- 2025-2030中國WEB應(yīng)用防火墻(WAF)行業(yè)發(fā)展規(guī)劃與投資前景預(yù)測報告
- 山東體育學院招聘筆試真題2024
- 河北省城鄉(xiāng)發(fā)展集團有限公司招聘筆試真題2024
- 2024年河北環(huán)境工程學院輔導員考試真題
- 2024年南通市海門區(qū)康復(fù)醫(yī)療中心招聘筆試真題
- 2024年北京科技職業(yè)大學招聘筆試真題
- 危重癥護理小組管理制度
- 公司開關(guān)燈時間管理制度
- 2025年江蘇高考歷史真題(解析版)
- 廣西來賓市2023-2024學年高二下學期7月期末考試物理試題(含答案)
- 2026屆高考議論文寫作專題:議論文基礎(chǔ)寫作結(jié)構(gòu)
- 會員月底抽獎活動方案
- 醫(yī)院培訓課件:《高血壓病防治策略》
- (2025)發(fā)展對象考試試題附及答案
- 設(shè)備備品備件管理制度
- 2025家庭裝飾裝修合同范本
- 農(nóng)村自建房流程
- 醫(yī)生護士家長進課堂助教兒童醫(yī)學小常識課件
- DLT 572-2021 電力變壓器運行規(guī)程
評論
0/150
提交評論