河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北大名一中2023年數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.2.《周髀算經(jīng)》是中國最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長依次成等差數(shù)列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺3.下列直線中,傾斜角為45°的是()A. B.C. D.4.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn),則的最小值為()A. B.2C. D.35.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等6.已知曲線C的方程為,則下列結(jié)論正確的是()A.當(dāng)時(shí),曲線C為圓B.“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點(diǎn)在x軸上的橢圓”的必要而不充分條件D.存在實(shí)數(shù)k使得曲線C為雙曲線,其離心率為7.下列函數(shù)的求導(dǎo)正確的是()A. B.C. D.8.拋物線的焦點(diǎn)到準(zhǔn)線的距離()A.4 B.C.2 D.9.已知直線在兩個(gè)坐標(biāo)軸上的截距之和為7,則實(shí)數(shù)m的值為()A.2 B.3C.4 D.510.將上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線C,若直線l與曲線C交于A,B兩點(diǎn),且AB中點(diǎn)坐標(biāo)為M(1,),那么直線l的方程為()A. B.C. D.11.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形12.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知橢圓的面積為,、分別是的兩個(gè)焦點(diǎn),過的直線交于、兩點(diǎn),若的周長為,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,滿足,則________14.已知圓:,圓:,則圓與圓的位置關(guān)系是______15.已知點(diǎn)在圓C:()內(nèi),過點(diǎn)M的直線被圓C截得的弦長最小值為8,則______16.已知數(shù)列的前的前n項(xiàng)和為,數(shù)列的的前n項(xiàng)和為,則滿足的最小n的值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,離心率為,橢圓上任一點(diǎn)滿足(1)求橢圓的方程;(2)若動(dòng)直線與橢圓相交于、兩點(diǎn),若坐標(biāo)原點(diǎn)總在以為直徑的圓外時(shí),求的取值范圍.18.(12分)等差數(shù)列中,首項(xiàng),且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和19.(12分)已知拋物線,直線交于、兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)如圖,拋物線在、兩點(diǎn)處的切線分別與軸交于、,和交于,.證明:存在實(shí)數(shù),使得.20.(12分)已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積21.(12分)已知圓,直線的斜率為2,且過點(diǎn)(1)判斷與的位置關(guān)系;(2)若圓,求圓與圓的公共弦長22.(10分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因?yàn)閳A關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時(shí)取等號,故選:C.2、D【解析】根據(jù)題意轉(zhuǎn)化為等差數(shù)列,求首項(xiàng).【詳解】設(shè)冬至的日影長為,雨水的日影長為,根據(jù)等差數(shù)列的性質(zhì)可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D3、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C4、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點(diǎn)A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點(diǎn)P的點(diǎn),過作于點(diǎn)N,連PF,AN,,由拋物線定義知,,于是得,即點(diǎn)P是過A作準(zhǔn)線l的垂線與拋物線C的交點(diǎn)時(shí),取最小值,所以的最小值為3.故選:D5、D【解析】根據(jù)橢圓方程求得兩個(gè)橢圓的,由此確定正確選項(xiàng).【詳解】橢圓與(0<k<9)的焦點(diǎn)分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D6、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計(jì)算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當(dāng)時(shí),曲線C的方程為,此時(shí)曲線C表示橢圓,所以A錯(cuò)誤;對于B中,當(dāng)曲線C的方程為表示焦點(diǎn)在x軸上的雙曲線時(shí),則滿足,解得,所以“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當(dāng)曲線C的方程為表示焦點(diǎn)在x軸上的橢圓時(shí),則滿足,解得,所以“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當(dāng)曲線C的方程為表示雙曲線,且離心率為時(shí),此時(shí)雙曲線的實(shí)半軸長等于虛半軸長,此時(shí),解得,此時(shí)方程表示圓,所以不正確.故選:C.7、B【解析】對各個(gè)選項(xiàng)進(jìn)行導(dǎo)數(shù)運(yùn)算驗(yàn)證即可.【詳解】,故A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤.故選:B8、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點(diǎn)到準(zhǔn)線的距離為4.故選:A.9、C【解析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實(shí)數(shù)m的值.【詳解】當(dāng)時(shí),,故不合題意,故,,令得:,令得:,故,解得:.故選:C10、A【解析】先根據(jù)題意求出曲線C的方程,然后利用點(diǎn)差法求出直線l的斜率,從而可求出直線方程【詳解】設(shè)點(diǎn)為曲線C上任一點(diǎn),其在上對應(yīng)在的點(diǎn)為,則,得,所以,所以曲線C的方程為,設(shè),則,兩方程相減整理得,因?yàn)锳B中點(diǎn)坐標(biāo)為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A11、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C12、A【解析】本題首先可根據(jù)題意得出,然后根據(jù)的周長為得出,最后根據(jù)求出的值,即可求出的離心率.【詳解】因?yàn)闄E圓的面積為,所以長半軸長與短半軸長的乘積,因?yàn)榈闹荛L為,所以根據(jù)橢圓的定義易知,,,,則的離心率,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當(dāng)時(shí),可得,當(dāng)時(shí),可得,當(dāng)時(shí),可得,故答案為:15.14、相交【解析】把兩個(gè)圓的方程化為標(biāo)準(zhǔn)方程,分別找出兩圓的圓心坐標(biāo)和半徑,利用兩點(diǎn)間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.15、【解析】根據(jù)點(diǎn)與圓的位置關(guān)系,可求得r的取值范圍,再利用過圓內(nèi)一點(diǎn)最短的弦,結(jié)合弦長公式可得到關(guān)于r的方程,求解即可.【詳解】由點(diǎn)在圓C:內(nèi),且所以,又,解得過圓內(nèi)一點(diǎn)最短的弦,應(yīng)垂直于該定點(diǎn)與圓心的連線,即圓心到直線的距離為又,所以,解得故答案為:16、9【解析】由數(shù)列的前項(xiàng)和為,則當(dāng)時(shí),,所以,所以數(shù)列的前和為,當(dāng)時(shí),,當(dāng)時(shí),,所以滿足的最小的值為.點(diǎn)睛:本題主要考查了等差數(shù)列與等比數(shù)列的綜合應(yīng)用問題,其中解答中涉及到數(shù)列的通項(xiàng)與的關(guān)系,推導(dǎo)數(shù)列的通項(xiàng)公式,以及等差、等比數(shù)列的前項(xiàng)和公式的應(yīng)用,熟記等差、等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式是解答的關(guān)鍵,著重考查了學(xué)生的推理與運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由已知計(jì)算可得即可得出方程.(2)由已知可得聯(lián)立方程,結(jié)合韋達(dá)定理計(jì)算即可得出結(jié)果.【小問1詳解】依題得解得:橢圓的方程為.【小問2詳解】由已知?jiǎng)又本€與橢圓相交于、,設(shè)聯(lián)立得:解得:,即:或(*)坐標(biāo)原點(diǎn)總在以為直徑的圓外則:,即將(*)代入此式,解得:,即或或18、(1)(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)結(jié)合等差數(shù)列的通項(xiàng)公式求出,進(jìn)而得出數(shù)列的通項(xiàng)公式;(2)根據(jù)裂項(xiàng)相消求和法得出前項(xiàng)和為和.【小問1詳解】因?yàn)槌傻缺葦?shù)列,所以即,解得,所以;【小問2詳解】因?yàn)椋?,?9、(1);(2)證明見解析.【解析】(1)將代入拋物線的方程,列出韋達(dá)定理,利用弦長公式可得出關(guān)于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達(dá)定理,求出兩切線方程,進(jìn)而可求得點(diǎn)的坐標(biāo),分、兩種情況討論,在時(shí),推導(dǎo)出、、重合,可得出;在時(shí),求出的中點(diǎn)的坐標(biāo),利用斜率關(guān)系可得出,結(jié)合平面向量的線性運(yùn)算可證得結(jié)論成立.【小問1詳解】解:將代入得,設(shè)、,則,由韋達(dá)定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設(shè)、,則,由韋達(dá)定理可得,對求導(dǎo)得,則拋物線在點(diǎn)處的切線方程為,即,①同理拋物線在點(diǎn)處的切線方程為,②聯(lián)立①②得,所以,所以點(diǎn)的坐標(biāo)為,當(dāng)時(shí),即切線與交于軸上一點(diǎn),此時(shí)、、重合,由,則,又,則存在使得成立;當(dāng)時(shí),切線與軸交于點(diǎn),切線與軸交于點(diǎn),由,得的中點(diǎn),由得,即,又,所以,所以,,又,所以存在實(shí)數(shù)使得成立.綜上,命題成立.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時(shí)計(jì)算;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達(dá)定理求解.20、(1)(2)【解析】(1)先求得的中點(diǎn),由此求得邊AC上的中線所在直線方程.(2)結(jié)合點(diǎn)到直線距離公式求得的面積.【小問1詳解】的中點(diǎn)為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.21、(1)與相切;(2)【解析】(1)求出圓C的圓心坐標(biāo),半徑和直線l的方程,根據(jù)圓心到直線的距離即可判斷直線與圓的位置關(guān)系;(2)圓與圓的方程相減,可求出公共弦所在的直線方程,然后根據(jù)圓M的圓心到公共弦所在直線的距離及圓M的半徑即可求出公共弦長.【小問1詳解】由圓,可得,所以圓心為,半徑,直線的方程為,即因?yàn)閳A心到的距離為,所以與相切【小問2詳解】聯(lián)立方程可得,作差可得,即,即公共弦所在直線的方程為易知圓的半徑,圓心到直線的距離為,則公共弦長22、(1)證明見解析;(2).【解析】(1)連接與交于點(diǎn)O,易得平面,取的中點(diǎn)M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點(diǎn),分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論