




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河北省滄州市肅寧一中2024屆高二數(shù)學第一學期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),的最小值為()A.2 B.3C. D.2.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.3.若a,b,c為實數(shù),且,則以下不等式成立的是()A. B.C. D.4.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.55.頂點在原點,關于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.6.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真7.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.8.,則()A. B.C. D.9.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數(shù),則曲線在點處的切線方程為()A. B.C. D.11.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.12.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.14.由曲線圍成的圖形的面積為________15.在平面上給定相異兩點A,B,點P滿足,則當且時,P點的軌跡是一個圓,我們稱這個圓為阿波羅尼斯圓.已知橢圓的離心率,A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點P滿足,若的面積的最大值為3,則面積的最小值為___________.16.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),記f(x)的導數(shù)為f′(x).若曲線f(x)在點(1,f(1))處的切線斜率為﹣3,且x=2時y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值18.(12分)如圖,在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知b=3,c=6,,且AD為BC邊上的中線,AE為∠BAC的角平分線(1)求及線段BC的長;(2)求△ADE的面積19.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:21.(12分)同時擲兩顆質(zhì)地均勻的骰子(六個面分別標有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點數(shù)相等的概率;(2)求兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的整數(shù)倍的概率22.(10分)平面直角坐標系xOy中,點,,點M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點,若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求導函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當時,,單調(diào)遞減;當時,,單調(diào)遞增∴當時,取得最小值,且最小值為故選:B.2、D【解析】設雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D3、C【解析】利用不等式的性質(zhì)直接推導和取值驗證相結(jié)合可解.【詳解】取可排除ABD;由不等式的性質(zhì)易得C正確.故選:C4、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.5、C【解析】根據(jù)題意,設拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C6、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.7、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.8、B【解析】求出,然后可得答案.【詳解】,所以故選:B9、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A10、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D11、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題12、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.14、【解析】曲線圍成的圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關于關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.15、【解析】先根據(jù)求出圓的方程,再由的面積的最大值結(jié)合離心率求出和的值,進而求出面積的最小值.【詳解】解:由題意,設,,因為即兩邊平方整理得:所以圓心為,半徑因為的面積的最大值為3所以,解得:因為橢圓離心率即,所以由得:所以面積的最小值為:故答案為:.【點睛】思路點睛:本題先根據(jù)已知的比例關系求出阿波羅尼斯圓的方程,再利用已知面積和離心率求出橢圓的方程,進而求得面積的最值.16、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導可得f′(x)的解析式,根據(jù)導數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當﹣1<x<0時,f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當0<x<1時,f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣318、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化簡已知條件,求得,結(jié)合余弦定理求得,也即.(2)求得三角形的面積,結(jié)合角平分線、中線的性質(zhì)求得三角形的面積.小問1詳解】∵,∴,∴,∴由余弦定理得(負值舍去),即BC=6.【小問2詳解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD為BC邊的中線,∴,∴.19、(1)(2)【解析】(1)由于在點處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,從而可求出其值域.【小問1詳解】因為函數(shù)在處有極大值,所以,①且②聯(lián)立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數(shù)區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;又,所以在上的值域為.20、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,設,,,則0,,0,,2b,,2b,,0,,為AB的中點,F(xiàn)為PC的中點,0,,b,,b,,,2b,,共面.(2),【點睛】本題考查三個向量共面的證明,考查兩直線垂直的證明,是基礎題21、(1);(2).【解析】(1)求出同時擲兩顆骰子的基本事件數(shù)、及骰子向上的點數(shù)相等的基本事件數(shù),應用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)的基本事件,應用古典概型的概率求法,求概率即可.【小問1詳解】同時擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點數(shù)相等包括的基本事件為6種,故所求的概率為;【小問2詳解】兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)時,用坐標記為,,,,,,,,,,,,,,,,共包括16個基本事件,故兩顆骰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GA 1812.2-2024銀行系統(tǒng)反恐怖防范要求第2部分:數(shù)據(jù)中心
- 設計師工資合同協(xié)議
- 購買大米糧油合同協(xié)議
- 購買花崗巖石材合同協(xié)議
- 賬目結(jié)算協(xié)議書范本
- 詳細家政用工合同協(xié)議
- 購買油站股份合同協(xié)議
- 解除合同后降價補償協(xié)議
- 購房合同夫妻股份協(xié)議
- 資源互換裝修合同協(xié)議
- 20以內(nèi)加減法口算題(10000道)(A4直接打印-每頁100題)
- 通達信筆均量柱狀圖指標公式
- 【S】幼兒繪本故事《三只小豬》課件
- 中考數(shù)學二元一次方程專題訓練100題(含答案)
- 樂高EV3初級課程課件 - 仿生蜘蛛
- 國開電大《小學數(shù)學教學研究》形考任務2答案
- 七年級下地理試題
- 寧夏水利建筑工程預算定額
- 山東省普通高中學生發(fā)展報告
- 野外生存優(yōu)秀課件
- 中職數(shù)學指數(shù)函數(shù)與對數(shù)函數(shù)試卷
評論
0/150
提交評論