河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題含解析_第1頁
河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題含解析_第2頁
河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題含解析_第3頁
河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題含解析_第4頁
河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省新鄉(xiāng)市重點初中2024屆數(shù)學高二上期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.2.已知數(shù)列通項公式,則()A.6 B.13C.21 D.313.已知,則下列不等式一定成立的是()A. B.C. D.4.等差數(shù)列前項和,已知,,則的值是().A. B.C. D.5.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.6.已知等差數(shù)列中的、是函數(shù)的兩個不同的極值點,則的值為()A. B.1C.2 D.37.已知,則a,b,c的大小關(guān)系為()A. B.C. D.8.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.9.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.10.定義焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對相關(guān)曲線.已知,是一對相關(guān)曲線的焦點,Р是這對相關(guān)曲線在第一象限的交點,則點Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定11.拋物線準線方程為()A. B.C. D.12.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,記,則______;數(shù)列的通項公式為______.14.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費用不斷増加.已知將噸水凈化到純凈度為時所需費用(單位:元)為.則凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的___________倍,這說明,水的純凈度越高,凈化費用增加的速度越___________(填“快”或“慢”).15.已知等比數(shù)列滿足,則_________16.小明同學發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,為坐標原點,曲線上點都在軸及其右側(cè),且曲線上的任一點到軸的距離比它到圓的圓心的距離小1(1)求曲線的方程;(2)已知過點的直線交曲線于點,若,求面積18.(12分)已知圓,是圓上一點,過A作直線l交圓C于另一點B,交x軸正半軸于點D,且A為的中點.(1)求圓C在點A處的切線方程;(2)求直線l的方程.19.(12分)已知拋物線C:x2=4y的焦點為F,過F的直線與拋物線C交于A,B兩點,點M在拋物線C的準線上,MF⊥AB,S△AFM=λS△BFM(1)當λ=3時,求|AB|的值;(2)當λ∈[]時,求|+|的最大值20.(12分)如圖1是,,,,分別是邊,上兩點,且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.21.(12分)森林資源是全人類共有的寶貴財富,其在改善環(huán)境,保護生態(tài)可持續(xù)發(fā)展方面發(fā)揮著重要的作用.2020年12月12日,主席在全球氣候峰會上通過視頻發(fā)表題為《繼往開來,開啟全球應(yīng)對氣候變化的新征程》的重要講話,宣布“到2030年,我國森林蓄積量將比2005年增加60億立方米”.為了實現(xiàn)這一目標,某地林業(yè)管理部門著手制定本地的森林蓄積量規(guī)劃.經(jīng)統(tǒng)計,本地2020年底的森林蓄積量為120萬立方米,森林每年以25%的增長率自然生長,而為了保證森林通風和發(fā)展經(jīng)濟的需要,每年冬天都要砍伐掉萬立方米的森林.設(shè)為自2021年開始,第年末的森林蓄積量.(1)請寫出一個遞推公式,表示二間的關(guān)系;(2)將(1)中的遞推公式表示成的形式,其中,為常數(shù);(3)為了實現(xiàn)本地森林蓄積量到2030年底翻兩番的目標,每年的砍伐量最大為多少萬立方米?(精確到1萬立方米)(可能用到的數(shù)據(jù):,,)22.(10分)已知雙曲線及直線(1)若與有兩個不同的交點,求實數(shù)的取值范圍(2)若與交于,兩點,且線段中點的橫坐標為,求線段的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點斜式方程,屬于基礎(chǔ)題2、C【解析】令即得解.【詳解】解:令得.故選:C3、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B4、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選5、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.6、C【解析】對求導,由題設(shè)及根與系數(shù)關(guān)系可得,再根據(jù)等差中項的性質(zhì)求,最后應(yīng)用對數(shù)運算求值即可.【詳解】由題設(shè),,由、是的兩個不同的極值點,所以,又是等差數(shù)列,所以,即,故.故選:C7、A【解析】根據(jù)給定條件構(gòu)造函數(shù),再探討其單調(diào)性并借助單調(diào)性判斷作答.【詳解】令函數(shù),求導得,當時,,于是得在上單調(diào)遞減,而,則,即,所以,故選:A8、B【解析】根據(jù)給定條件建立空間直角坐標系,令,用表示出點E,F(xiàn)坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B9、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.10、A【解析】設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點的距離公式將點的坐標用表示,從而可判斷出點與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點到圓心的距離為,所以點Р在以為直徑的圓外.故選:A.11、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎(chǔ)題12、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②..【解析】結(jié)合遞推公式計算出,即可求出的值;證得數(shù)列是以3為首項,2為公比的等比數(shù)列,即可求出結(jié)果.【詳解】因為,所以,,,因此,由于,又,即,所以,因此數(shù)列是以3為首項,2為公比的等比數(shù)列,則,即,故答案為:;.14、①.②.快【解析】根據(jù)導數(shù)的概念可知凈化所需費用的瞬時變化率即為函數(shù)的一階導數(shù),即先對函數(shù)求導,然后將和代入進行計算,再求,即可得到結(jié)果,進而能夠判斷水的純凈度越高,凈化費用增加的速度的快慢【詳解】由題意,可知凈化所需費用的瞬時變化率為,所以,,所以,所以凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的倍;因為,可知水的純凈度越高,凈化費用增加的速度越快.故答案為:,快.15、84【解析】設(shè)公比為q,求出,再由通項公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:8416、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設(shè)雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意直接列或根據(jù)拋物線的定義求軌跡方程(2)待定系數(shù)法設(shè)直線方程,聯(lián)立直線與拋物線方程,根據(jù)拋物線的定義,利用韋達定理解出直線方程,再求面積【小問1詳解】解法1:配方法可得圓的方程為,即圓的圓心為,設(shè)的坐標為,由已知可得,化簡得,曲線的方程為解法2:配方可得圓的方程為,即圓的圓心為,由題意可得上任意一點到直線的距離等于該點到圓心的距離,由拋物線的定義可得知,點的軌跡為以點為焦點的拋物線,所以曲線的方程為【小問2詳解】拋物線的焦點為,準線方程為,由,可得的斜率存在,設(shè)為,,過的直線的方程為,與拋物線的方程聯(lián)立,可得,設(shè),的橫坐標分別為,,可得,,由拋物線的定義可得,解得,即直線的方程為,可得到直線的距離為,,所以的面積為18、(1)(2)或【解析】(1)以直線方程的點斜式去求圓C在點A處的切線方程;(2)以A為的中點為突破口,設(shè)點法去求直線l的方程簡單快捷.【小問1詳解】圓可化為,圓心因為直線的斜率為,所以圓C在A點處切線斜率為2,所以切線方程為即.【小問2詳解】由題意設(shè)因為是中點,所以將B代入圓C方程得解得或當時,,此時l方程為當時,,此時l方程為所以l方程為或19、(1)(2)【解析】(1)由面積之比可得向量之比,設(shè)直線AB的方程,與拋物線的方程聯(lián)立求出兩根之和及兩根之積,與向量的關(guān)系可得的A,B的橫坐標的關(guān)系聯(lián)立求出直線AB的斜率,再由拋物線的性質(zhì)可得焦點弦的值;(2)由(1)的解法類似的求出AB的中點N的坐標,可得直線AB的斜率與λ的關(guān)系,再由λ的范圍,求出直線AB的斜率的范圍,由題意設(shè)直線MF的方程,令y=﹣1求出M的橫坐標,進而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小問1詳解】當λ=3時,即S△AFM=3S△BFM,由題意可得=3,因為拋物線C:x2=4y的焦點為F(1,0),準線方程為y=﹣1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,聯(lián)立,整理可得:x2﹣4kx﹣4=0,顯然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,則(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③聯(lián)立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由拋物線的性質(zhì)可得|AB|=y(tǒng)1+y2+2=4×+2=,所以|AB|的值為;【小問2詳解】由(1)可得AB中點N(2k,2k2+2),由=λ,則x1=﹣λx2④,同(1)的算法:①②④聯(lián)立4k2λ=(1﹣λ)2,因為λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],則函數(shù)y先減后增,所以λ=2或時,y最大且為2+,此時4k2最大,且為,所以k2的最大值為:,直線MF的方程為:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因為|+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值為20、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質(zhì)即可證明;(2)、建立空間直角坐標系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設(shè)平面的法向量為,平面的法向量為,則與,即與,..,觀察可知二面角為鈍二面角,二面角的正切值為.21、(1);(2).;(3)19萬立方米.【解析】(1)由題意得到;(2)若遞推公式寫成,則,再與遞推公式比較系數(shù);(3)若實現(xiàn)翻兩番的目標,則,根據(jù)遞推公式,計算的最大值.【詳解】解:(1)由題意,得,并且.①(2)將化成,②比較①②的系數(shù),得解得所以(1)中的遞推公式可以化為.(3)因為,且,所以,由(2)可知,所以,即數(shù)列是以為首項,為公比的等比數(shù)列,其通項公式:,所以.到2030年底的森林蓄積量為該數(shù)列的第10項,即.由題意,森林蓄積量到2030年底要達到翻兩番的目標,所以,即.即.解得.所以每年的砍伐量最大為19萬立方米.【點睛】方法點睛:遞推公式求通項公式,有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論