




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省華中師范大學(xué)東湖開發(fā)區(qū)第一附屬中學(xué)2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形2.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20223.下列結(jié)論正確的個數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.14.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)6.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點,則最大值為()A.3 B.4C.5 D.68.在空間直角坐標(biāo)系下,點關(guān)于平面的對稱點的坐標(biāo)為()A. B.C. D.9.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.10.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.設(shè)數(shù)列的前項和為,且,則()A. B.C. D.12.在區(qū)間內(nèi)隨機地取出兩個數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.14.設(shè)實數(shù)x,y滿足,則的最小值為______15.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)△ABC的面積為S,其中,,則S的最大值為______16.設(shè)圓,圓,則圓有公切線___________條.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列前項和,求使得不等式成立的的最小值.18.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.19.(12分)已知數(shù)列{an}的前n項和為Sn,.(1)求數(shù)列{an}通項公式;(2)求數(shù)列的前n項和,求使不等式成立的最大整數(shù)m的值.20.(12分)點與定點的距離和它到直線:的距離的比是常數(shù).(1)求動點的軌跡的方程;(2)點在(1)中軌跡上運動軸,為垂足,點滿足,求點軌跡方程.21.(12分)已知圓內(nèi)有一點,過點P作直線l交圓C于A,B兩點.(1)當(dāng)P為弦的中點時,求直線l的方程;(2)若直線l與直線平行,求弦的長.22.(10分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點,,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C2、C【解析】結(jié)合向量坐標(biāo)運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C3、D【解析】根據(jù)常數(shù)函數(shù)的導(dǎo)數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導(dǎo)公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的求導(dǎo)公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D4、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.5、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時等號成立,∴要使恒成立,只需,故,∴.故選:B.6、C【解析】討論橢圓焦點的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關(guān)系.【詳解】當(dāng)橢圓的焦點在軸上時,,得;當(dāng)橢圓的焦點在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.7、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.8、C【解析】根據(jù)空間坐標(biāo)系中點的對稱關(guān)系求解【詳解】點關(guān)于平面的對稱點的坐標(biāo)為,故選:C9、D【解析】經(jīng)判斷點在圓內(nèi),與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內(nèi),連接,當(dāng)時,弦長最短,,所以弦長,當(dāng)過圓心時,最長等于直徑8,所以的取值范圍是故選:D10、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.11、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時,.當(dāng)時,.故選:C.12、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進而根據(jù)面積比求概率.【詳解】由題意知:若兩個數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用垂徑定理計算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.14、5【解析】畫出可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】畫出可行域和目標(biāo)函數(shù)如圖所示:根據(jù)平移知,當(dāng)目標(biāo)函數(shù)經(jīng)過點時,有最小值為5.故答案為:5.15、【解析】應(yīng)用余弦定理有,再由三角形內(nèi)角性質(zhì)及同角三角函數(shù)平方關(guān)系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當(dāng)且僅當(dāng)時等號成立,又,當(dāng)且僅當(dāng)時等號成立.故答案為:16、2【解析】將圓轉(zhuǎn)化成標(biāo)準(zhǔn)式,結(jié)合圓心距判斷兩圓位置關(guān)系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項間關(guān)系,由此求出的公比,進而求得,的通項公式.(2)利用(1)的結(jié)論結(jié)合錯位相減法求出,再將不等式變形,經(jīng)推理計算得解.【小問1詳解】解:設(shè)正項等比數(shù)列的公比為,當(dāng)時,,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時是遞增的,于是得當(dāng)時,即,,則,所以不等式成立的n的最小值是5.18、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計算可得;(2)首先求出命題為真時參數(shù)的取值范圍,再根據(jù)“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問1詳解】解:為真命題,即函數(shù)在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當(dāng)且僅當(dāng)時等號成立,∴的取值范圍為.【小問2詳解】解:為真命題,即方程有實數(shù)解∴即∴或∵“”為真,“”為假∴真假,或假真∴或,解得或,∴的取值范圍為或;19、(1);(2).【解析】(1)根據(jù)給定的遞推公式變形,再構(gòu)造常數(shù)列求解作答.(2)利用(1)的結(jié)論求出,再利用裂項相消法求和,由單調(diào)性求出最大整數(shù)m值作答.【小問1詳解】依題意,,當(dāng)時,,兩式相減得:,即,整理得:,于是得,所以數(shù)列{an}的通項公式是.【小問2詳解】由(1)得,,數(shù)列是遞增數(shù)列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數(shù)m的值是505.【點睛】思路點睛:使用裂項法求和時,要注意正負(fù)項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負(fù)相消是此法的根源與目的20、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設(shè),利用表示出點,再將點代入橢圓,化簡即可得出答案?!驹斀狻浚?)由題意知,所以化簡得:(2)設(shè),因為,則將代入橢圓得化簡得【點睛】本題考查軌跡方程,一般求某點的軌跡方程,只需要設(shè)該點為,利用所給條件建立的關(guān)系式,化簡即可。屬于基礎(chǔ)題。21、(1)(2)【解析】(1)由題意,,求出直線l的斜率,利用點斜式即可求解;(2)由題意,利用點斜式求出直線l的方程,然后由點到直線的距離公式求出弦心距,最后根據(jù)弦長公式即可求解.小問1詳解】解:由題意,圓心,P為弦的中點時,由圓的性質(zhì)有,又,所以,所以直線l的方程為,即;【小問2詳解】解:因為直線l與直線平行,所以,所以直線的方程為,即,因為圓心到直線的距離,又半徑,所以由弦長公式得.22、(1)證明見解析;(2).【解析】(1)連接,可通過證明,得平面;(2)以O(shè)為坐標(biāo)原點建立如圖所示的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB50-T 1764-2024 渣海椒加工技術(shù)規(guī)范
- 本科教學(xué)工作審核評估宣傳手冊
- 病理學(xué)(醫(yī)學(xué)高級):病理學(xué)綜合強化練習(xí)題
- 《跨境電商實務(wù)》課件 項目二 比較跨境電商平臺
- 兒童哮喘的快速緩解與控制
- 湖南省三新協(xié)作體2024-2025學(xué)年高二下學(xué)期4月期中考試政治試題
- 廣東省韶關(guān)市2024-2025學(xué)年高一下學(xué)期期末教學(xué)質(zhì)量檢測生物試卷(無答案)
- 個性化教育與差異化教學(xué)
- 江西省贛州市2024-2025 學(xué)年高一下學(xué)期期末考試語文試卷(含答案)
- 少先隊活動禮儀活動方案
- 運輸公司交通安全培訓(xùn)課件
- 北師大版7年級數(shù)學(xué)下冊期末真題專項練習(xí) 03 計算題(含答案)
- 小學(xué)生匯報講課件
- 職業(yè)衛(wèi)生管理制度和操作規(guī)程標(biāo)準(zhǔn)版
- 小學(xué)信息技術(shù)四年級下冊教案(全冊)
- 河道保潔船管理制度
- 2025浙江嘉興市海寧市嘉睿人力招聘5人筆試參考題庫附帶答案詳解析版
- 2025年重慶市中考物理試卷真題(含標(biāo)準(zhǔn)答案)
- 2025年安徽蚌埠市龍子湖區(qū)東方人力資源有限公司招聘筆試參考題庫含答案解析
- 2025至2030中國云計算行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 語文(西藏卷)-2025年中考考前預(yù)測卷(全解全析)
評論
0/150
提交評論