英文版學(xué)習(xí)課件:Feature Selection for Ranking_第1頁
英文版學(xué)習(xí)課件:Feature Selection for Ranking_第2頁
英文版學(xué)習(xí)課件:Feature Selection for Ranking_第3頁
英文版學(xué)習(xí)課件:Feature Selection for Ranking_第4頁
英文版學(xué)習(xí)課件:Feature Selection for Ranking_第5頁
已閱讀5頁,還剩45頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

FeatureSelectionforRanking

Cenfangming2007.10ABSTRACT

TherealityisthatmanyfeatureselectionmethodsusedinclassificationaredirectlyappliedtorankingWearguethatbecauseofthestrikingdifferencesbetweenrankingandclassification,itisbettertodevelopdifferentfeatureselectionmethodsforranking.

InthispaperweproposeanewfeatureselectionmethodDefinetherankingaccuracyintermsofaperformancemeasureoralossfunctionastheimportanceofthefeatureandthecorrelationbetweentherankingresultsoftwofeaturesasthesimilaritybetweenthem.Wealsodemonstratehowtosolvetheoptimizationprobleminanefficientway.Wehavetestedtheeffectivenessofourfeatureselectionmethodontwoinformationretrievaldatasetsandwithtworankingmodel1.INTRODUCTION

RankingSVMandRankNet

First,featureselectioncanhelpenhanceaccuracyinmanymachinelearningproblems,whichstronglyindicatesthatfeatureselectionisalsonecessaryforranking

Second,featureselectioncanalsohelpimprovetheefficiencyoftraining.Ininformationretrieval,especiallyinwebsearch,usuallythedatasizeisverylargeandthustrainingofrankingmodelsiscomputationallycostly.

Therehavebeennomethodsoffeatureselectiondedicatedlyproposedforranking.Mostofthemethodsusedinrankingweredevelopedforclassification.Featureselectionmethodsinclassificationfallintothreecategorie

Thefirstcategory,whichisnamedfilter,featureselectionisdefinedasapreprocessingstepandcanbeindependentfromlearning.thatinformationgain(IG)andchi-square(CHI)areamongthemosteffectivemethodsoffeatureselectionforclassification.

ThesecondcategoryreferredtoaswrapperutilizesthelearningsystemasablackboxtoscoresubsetsoffeaturesThethirdcategorycalledtheembeddedmethodperformsfeatureselectionwithintheprocessoftraining.Second,theevaluationmeasures(e.g.meanaverageprecision(MAP)andnormalizeddiscountedcumulativegain(NDCG))usedinrankingproblemsaredifferentfromthosemeasuresusedinclassification

1)inrankingusuallyprecisionismoreimportantthanrecallwhileinclassificationbothprecisionandrecallareimportant;

SeveralproblemsmayarisewhenapplyingthefeatureselectionmethodstorankingFirst:existingfeatureselectionmethodsforclassificationarenotsuitableforranking.Inranking,anumberoforderedcategoriesareused,representingtherankingrelationshipbetweeninstances,whileinclassificationthecategoriesare“flat”

2)

inrankingcorrectlyrankingthetop-ninstancesismorecriticalwhileinclassificationmakingacorrectclassificationdecisionisofequalsignificanceforallinstances.

Thefollowingarethepropertiesofthenovelmethodforfeatureselectioninranking1)Themethodmakesuseofrankinginformation,insteadofsimplyviewingtheranksasflatcategories.2)Inspiredbytheworkin[1][14][27],itconsidersthesimilaritiesbetweenfeatures,andtriestoavoidselectingredundantfeatures.3)Itmodelsfeatureselectionforrankingasamulti-objectiveoptimizationproblem.Thefinalobjectiveistofindasetoffeatureswithmaximumimportanceandminimumsimilarity.4)Itprovidesagreedysearchalgorithmtosolvetheoptimizationproblem.Thecorrespondingsolutionproducedisproventobeequivalenttotheoptimalsolutiontotheoriginalproblemundercertaincondition.2.FEATURESELECTIONMETHOD

2.1OverviewSupposethegoalistoselect(1≤t≤m)featuresfromtheentirefeatureset{1,2,…,}.Inourmethodwefirstdefinetheimportancescoreofeachfeature,anddefinethesimilaritybetweenanytwofeaturesand.Thenweemployanefficientalgorithmtomaximizethetotalimportancescoresandminimizethetotalsimilarityscoresofasetoffeatures.

2.2ImportanceoffeatureWefirstassignanimportancescoretoeachfeature.Specifically,weproposeusinganevaluationmeasurelikeMAPandNDCGoralossfunction(e.g.pair-wiserankingerrors[10][13])tocomputetheimportancescore.Intheformer,wefirstrankinstancesusingthefeature,evaluatetheperformanceintermsofthemeasure,andthentaketheevaluationresultastheimportancescore.Inthelatter,wealsorankinstancesusingthefeature,andthenviewascoreinverselyproportionaltothecorrespondinglossastheimportancescore

2.3SimilaritybetweenfeaturesInthiswork,wemeasurethesimilaritybetweenanytwofeaturesonthebasisoftheirrankingresults.Thatis,weregardeachfeatureasarankingmodel,andthesimilaritybetweentwofeaturesisrepresentedbythesimilaritybetweentherankingresultsthattheyproduce.wechooseKendall’s??asanexample.TheKendall’s??valueofqueryqforanytwofeatures????and????canbecalculatedasfollows,

2.4Optimizationformulation

wewanttoselectthosefeatureswithlargesttotalimportancescoresandsmallesttotalsimilarityscores.Mathematically,thiscanberepresentedasfollows:

In(1),therearetwoobjectives:tomaximizethesumoftheimportancescoresofindividualfeatures,andtominimizethesumofsimilarityscoresbetweenanytwofeatures.wetakeacommonapproachinoptimizationandconvertmulti-objectiveprogrammingtosingleobjectiveprogrammingusinglinearcombination.

2.5Solutiontooptimizationproblem

Theoptimizationin(2)isatypical0-1integerprogrammingproblem.Onepossibleapproachwouldbetoperformexhaustivesearch.However,thetimecomplexityofit,??(????),istoohightomakeitapplicableinrealapplications.Weneedtolookformorepracticalsolutions.

Inthiswork,weproposeagreedysearchalgorithmfortacklingtheissueAlgorithmGAS(GreedysearchAlgorithmoffeatureSelection)1.ConstructanundirectedgraphG0,inwhicheachnoderepresentsafeature,theweightofnode??is??andtheweightofanedgebetweennode??andnode??is 2.ConstructasetStocontaintheselectedfeatures.InitiallyS0=?.

3.Fori=1…t,(1)Selectthenodewiththelargestweight,withoutlossofgenerality,supposethattheselectednodeis

(2)Apunishmentisconductedonalltheothernodesaccordingtotheirsimilaritieswith??.Thatis,theweightsofalltheothernodesareupdatedasfollows.(3)Add??tothesetSandremoveitfromgraphGtogetherwithalltheedgesconnectedtoit:4.OutputSt.

Theorem1:WiththegreedysearchalgorithminFig.1onecanfindtheoptimalsolutiontoproblem(2),providedthat??????,where??denotestheselectedfeaturesetwith??Proof:Thecondition????indicatesthatwhenselectingthe(t+1)-thfeature,wedonotchangethealready-selectedtfeatures.Denote????={????|??i=1,…,t},where??istheki-thfeatureselectedinthei-thiteration.Thenthetaskturnsouttobethatoffindingthe(t+1)-thfeaturesothatthefollowingobjectivecanbemet.

Since,wecanrewrite(3)as

Andsince????and={??|i=1,…,t??},(4)equals 3.EXPERIMENTSETTINGS

3.1DatasetsInourexperiments,weusedtwobenchmarkdatasets.1)Thefirstdatasetisthe.govdatawhichwasusedinthetopicdistillationtaskofWebtrackofTREC2004[28].2)TheseconddatasetistheOHSUMEDdata[9],whichwasusedinmanyexperimentsininformationretrieval[6][10],includingtheTREC-9filteringtrack[26].3.2Evaluationmeasures

3.2.1Meanaverageprecision(MAP)

MAPisameasureonprecisionofrankingresultsItisassumedthattherearetwotypesofdocuments:positiveandnegative(relevantandirrelevant).Precisionatnmeasurestheaccuracyoftopnresultsforaquery.Averageprecisionofaqueryiscalculatedbasedonprecisionatn:

3.2.2Normalizeddiscountcumulativegain(NDCG)

NDCGisdesignedformeasuringrankingaccuracieswhentherearemultiplelevelsofrelevancejudgment.Givenaquery,NDCGatpositionninisdefined3.3Rankingmodel3.3.1RankingSVM

RankingSVMmakesanextensionofSVMtoranking;incontrasttotraditionalSVMwhichworksoninstances,RankingSVMutilizesinstancepairsandtheirpreferencelabelsintraining.TheoptimizationformulationofRankingSVMisasfollows:

3.3.2RankNet

RankNetalsousesinstancepairsintraining.itemploysaneuralnetworkastherankingfunctionandrelativeentropyaslossfunction.Letbetheestimatedposteriorprobability??andbethe“true”posteriorprobability,andlet.ThelossforaninstancepairinRankNetisdefinedas

3.4Algorithmsforcomparison

Ourproposedalgorithmhastwovariants.Welisttheminthefollowingtable.

Forcomparison,weselectedIGandCHIasthebaselines.IGmeasuresthereductioninuncertainty(entropy)inclassificationpredictionwhenknowingthefeature.CHImeasuresthedegreeofindependencebetweenthefeatureandthecategories.wealsoused“WithAllFeatures(WAF)”asanotherbaseline,inordertoshowthebenefitofconductingfeatureselection.4.EXPERIMENTALRESULTS

4.1The.govdataFig.2showstheperformancesofthefeatureselectionmethodsonthe.govdatasetwhentheyworkaspreprocessorsofRankingSVM.Fig.3showstheperformanceswhenusingRankNetastherankingmodel.Inthefigures,thex-axisrepresentsthenumberofselectedfeatures.ExperimentalresultsindicatethatinmostcasesGAS-LcanoutperformGAS-E,althoughnotsignificantlyExperimentalresultsalsoindicatethatwithGAS-LandGAS-EasfeatureselectionmethodstherankingperformancesofRankingSVMaremorestablethanthosewithIGandCHIasfeatureselectionmethods.4.2OHSUMEDdataFig.4showstheresultsofdifferentfeatureselectionmethodsontheOHSUMEDdatasetwhentheyworkaspreprocessorsofRankingSVMFig.5showstheresultsofdifferentfeatureselectionmethodsontheOHSUMEDdatasetwhentheyworkaspreprocessorsofRankNet4.3Discussions

Fromtheresultsofthetwodatasets,wemadethefollowingobservations:1)Featureselectioncanimprovetherankingperformancemoresignificantlyforthe.govdatasetthanfortheOHSUMEDdataset.

2)OurproposedalgorithmsoutperformIGandCHImoresignificantlyforthe.govdatasetthanfortheOHSUMEDdataset.

Tofigureoutthereasons,weconductedthefollowingadditionalexperiments.WefirstplottedtheimportanceofeachfeatureinthetwodatasetsinFig.6.Thex-axisrepresentsfeaturesandthey-axisrepresentstheirMAPvalueswhentheyareregardedasrankingmodels.Furthermore,weplottedthesimilaritybetweenanytwofeatures(intermsofKendall’s??)inthetwo\datasetsinFig.7.Here,bothx-axisandy-axisrepresentfeatures,andthelevelofdarknessrepresentsthestrengthofsimilarity(thedarker,themoresimilar).Basedonthediscussionsabove,weconcludethatiftheeffectsoffeaturesvarylargelyandthereareredundantfeatures,ourmethodcanworkverywell.Whenapplyingourmethodinpractice,therefore,onecanfirsttestthetwoaspects.5.CONCLUSIONSANDFUTUREWORK

Inthispaper,wehaveproposedanoptimizationmethodforfeatureselectioninranking.hecontributionsofthispaperincludethefollowingpoints.1)Wehavediscussedthedifferencesbetweenclassificationandranking,andmadeclearthelimitationsoftheexistingfeatureselectionmethodswhenappliedtoranking.2)Wehaveproposedanovelmethodtoselectfeaturesforranking,inwhichtheproblemisformalizedasanoptimizationissue.3)Wehaveevaluatedtheproposedmethod

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論