山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題含解析_第1頁
山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題含解析_第2頁
山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題含解析_第3頁
山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題含解析_第4頁
山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省臨沂市臨沭縣重點名校2024屆中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在一組數據:1,2,4,5中加入一個新數3之后,新數據與原數據相比,下列說法正確的是()A.中位數不變,方差不變 B.中位數變大,方差不變C.中位數變小,方差變小 D.中位數不變,方差變小2.在0.3,﹣3,0,﹣這四個數中,最大的是()A.0.3 B.﹣3 C.0 D.﹣3.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<14.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.5.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.6.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數為().A.50° B.40° C.30° D.25°7.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.8.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.9.二次函數的圖象如圖所示,則一次函數與反比例函數在同一坐標系內的圖象大致為()A. B. C. D.10.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.8的立方根為_______.12.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.13.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.14.如圖,正方形ABCD邊長為3,以直線AB為軸,將正方形旋轉一周.所得圓柱的主視圖(正視圖)的周長是_____.15.如圖,已知,,則________.16.分解因式:=___________.三、解答題(共8題,共72分)17.(8分)先化簡再求值:÷(﹣1),其中x=.18.(8分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長.19.(8分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.20.(8分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)21.(8分)如圖,一次函數(為常數,且)的圖像與反比例函數的圖像交于,兩點.求一次函數的表達式;若將直線向下平移個單位長度后與反比例函數的圖像有且只有一個公共點,求的值.22.(10分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數.23.(12分)如圖,在平面直角坐標系中,二次函數y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數圖象上的動點.(1)求二次函數的表達式;(2)當點P位于第二象限內二次函數的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.24.如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內的一點,若△CPD為等腰直角三角形,求出D點坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據中位數和方差的定義分別計算出原數據和新數據的中位數和方差,從而做出判斷.【題目詳解】∵原數據的中位數是2+42=3,平均數為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數據的中位數為3,平均數為1+2+3+【題目點撥】本題考查了中位數和方差,解題的關鍵是掌握中位數和方差的定義.2、A【解題分析】

根據正數大于0,0大于負數,正數大于負數,比較即可【題目詳解】∵-3<-<0<0.3∴最大為0.3故選A.【題目點撥】本題考查實數比較大小,解題的關鍵是正確理解正數大于0,0大于負數,正數大于負數,本題屬于基礎題型.3、D【解題分析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.4、A【解題分析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【題目點撥】本題考查1.相似三角形的判定與性質;2.平行四邊形的性質,綜合性較強,掌握相關性質定理正確推理論證是解題關鍵.5、D【解題分析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質;2.等邊三角形的性質;3.含30度角的直角三角形;4.勾股定理.6、B【解題分析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據平角為180°可得,∠2=90°﹣50°=40°.故選B.【題目點撥】本題考查平行線的性質,掌握兩直線平行,同位角相等是解題關鍵.7、B【解題分析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【題目詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【題目點撥】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.8、A【解題分析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.9、D【解題分析】

根據二次函數圖象開口向上得到a>0,再根據對稱軸確定出b,根據二次函數圖形與軸的交點個數,判斷的符號,根據圖象發(fā)現當x=1時y=a+b+c<0,然后確定出一次函數圖象與反比例函數圖象的情況,即可得解.【題目詳解】∵二次函數圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經過第二四象限,且與y軸的正半軸相交,反比例函數圖象在第二、四象限,只有D選項圖象符合.故選:D.【題目點撥】考查反比例函數的圖象,一次函數的圖象,二次函數的圖象,掌握函數圖象與系數的關系是解題的關鍵.10、B【解題分析】

由折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論EF=DF;易得FC=FA,設FA=x,則FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到關于x的方程x2=42+(6-x)2,解方程求出x即可.【題目詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設FA=x,則FC=x,FD=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【題目點撥】考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質和三角形全等的判定與性質以及勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解題分析】

根據立方根的定義可得8的立方根為2.【題目點撥】本題考查了立方根.12、120°【解題分析】

設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【題目詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【題目點撥】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.13、5【解題分析】

由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【題目詳解】解:∵3AE=2EB,設AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【題目點撥】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關鍵.14、1.【解題分析】分析:所得圓柱的主視圖是一個矩形,矩形的寬是3,長是2.詳解:矩形的周長=3+3+2+2=1.點睛:本題比較容易,考查三視圖和學生的空間想象能力以及計算矩形的周長.15、65°【解題分析】

根據兩直線平行,同旁內角互補求出∠3,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【題目詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【題目點撥】此題考查平行線的性質,解題關鍵在于利用同旁內角互補求出∠3.16、【解題分析】

直接利用完全平方公式分解因式得出答案.【題目詳解】解:=,故答案為.【題目點撥】此題主要考查了公式法分解因式,正確應用完全平方公式是解題關鍵.三、解答題(共8題,共72分)17、【解題分析】分析:根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.18、【解題分析】

過點B作BD⊥AC,在△ABD中由cosA=可計算出AD的值,進而求出BD的值,再由勾股定理求出BC的值.【題目詳解】解:過點B作BD⊥AC,垂足為點D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【題目點撥】本題考查了銳角的三角函數和勾股定理的運用.19、(1)見解析;(1)1【解題分析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【題目詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【題目點撥】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.20、答案見解析【解題分析】

連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【題目詳解】解:連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【題目點撥】本題考查作圖?復雜作圖,解題的關鍵是靈活運用所學知識解決問題.21、(1);(2)1或9.【解題分析】試題分析:(1)把A(-2,b)的坐標分別代入一次函數和反比例函數表達式,求得k、b的值,即可得一次函數的解析式;(2)直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數表達式為y=x+5-m,根據平移后的圖象與反比例函數的圖象有且只有一個公共點,把兩個解析式聯(lián)立得方程組,解方程組得一個一元二次方程,令△=0,即可求得m的值.試題解析:(1)根據題意,把A(-2,b)的坐標分別代入一次函數和反比例函數表達式,得,解得,所以一次函數的表達式為y=x+5.(2)將直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數表達式為y=x+5-m.由得,x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,解得m=1或9.點睛:本題考查了反比例函數與一次函數的交點問題,求反比例函數與一次函數的交點坐標,把兩個函數關系式聯(lián)立成方程組求解.22、(1)﹣1+3;(2)30°.【解題分析】

(1)根據零指數冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據平行線的性質可得∠EDC=∠B=,根據三角形內角和定理即可求解;【題目詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【題目點撥】(1)主要考查零指數冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.23、(1)y=﹣x2﹣3x+4;(2)當時,S有最大值;(3)點P的橫坐標為﹣2或1或或.【解題分析】

(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設,則,,,當時,S有最大值;(3)過點P作軸,設,則,,根據,列出關于x的方程,解之即可.【題目詳解】解:(1)將、代入,,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論