楚雄州雙柏縣2024屆中考四模數(shù)學試題含解析_第1頁
楚雄州雙柏縣2024屆中考四模數(shù)學試題含解析_第2頁
楚雄州雙柏縣2024屆中考四模數(shù)學試題含解析_第3頁
楚雄州雙柏縣2024屆中考四模數(shù)學試題含解析_第4頁
楚雄州雙柏縣2024屆中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

楚雄州雙柏縣2024屆中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.3.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經(jīng)過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點,則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④4.關于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<25.的相反數(shù)是A. B.2 C. D.6.當函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)7.實數(shù)a、b在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<08.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆剑褹B⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C9.計算-5x2-3x2的結果是()A.2x2 B.3x2 C.-8x2 D.8x210.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,2211.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.12.一元二次方程的根的情況是()A.有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知函數(shù)是關于的二次函數(shù),則__________.14.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.15.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.16.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.17.計算:()?=__.18.分式方程的解為x=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.20.(6分)如圖,已知矩形OABC的頂點A、C分別在x軸的正半軸上與y軸的負半軸上,二次函數(shù)的圖像經(jīng)過點B和點C.(1)求點A的坐標;(2)結合函數(shù)的圖象,求當y<0時,x的取值范圍.21.(6分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經(jīng)過A、B兩點,并與x軸交于另一點C(點C點A的右側),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內,過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.22.(8分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.23.(8分)如圖是一副撲克牌中的四張牌,將它們正面向下冼均勻,從中任意抽取兩張牌,用畫樹狀圖(或列表)的方法,求抽出的兩張牌牌面上的數(shù)字之和都是偶數(shù)的概率.24.(10分)從化市某中學初三(1)班數(shù)學興趣小組為了解全校800名初三學生的“初中畢業(yè)選擇升學和就業(yè)”情況,特對本班50名同學們進行調查,根據(jù)全班同學提出的3個主要觀點:A高中,B中技,C就業(yè),進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數(shù)最多,共有人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數(shù).(3)已知該班只有2位女同學選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).25.(10分)如圖1,在平面直角坐標系中,一次函數(shù)y=﹣1x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.(1)線段AB,BC,AC的長分別為AB=,BC=,AC=;(1)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖1.請從下列A、B兩題中任選一題作答,我選擇題.A:①求線段AD的長;②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.B:①求線段DE的長;②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.26.(12分)計算:(﹣2)2+20180﹣27.(12分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網(wǎng)格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應邊的比相等得到代入求值即可.【題目詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【題目點撥】主要考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.2、C【解題分析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.3、D【解題分析】

根據(jù)圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(jù)(-2,y1),(,y2)到對稱軸的距離即可判斷④.【題目詳解】∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯誤;∵,故④正確;故選D..【題目點撥】本題考查了二次函數(shù)的圖象與系數(shù)的關系的應用,題目比較典型,主要考查學生的理解能力和辨析能力.4、D【解題分析】

根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關系得到,m﹣2≠0,解得<m<2,即可求出答案.【題目詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【題目點撥】本題主要考查對根的判別式和根與系數(shù)的關系的理解能力及計算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關鍵.5、B【解題分析】

根據(jù)相反數(shù)的性質可得結果.【題目詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【題目點撥】本題考查求相反數(shù),熟記相反數(shù)的性質是解題的關鍵.6、B【解題分析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數(shù)值y隨著x的增大而減??;故選B.點睛:本題主要考查了二次函數(shù)的性質,解題的關鍵是熟記二次函數(shù)的性質.7、C【解題分析】

直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【題目詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【題目點撥】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關鍵是掌握利用數(shù)軸表示有理數(shù)的大小.8、B【解題分析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【題目詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【題目點撥】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關鍵.9、C【解題分析】

利用合并同類項法則直接合并得出即可.【題目詳解】解:故選C.【題目點撥】此題主要考查了合并同類項,熟練應用合并同類項法則是解題關鍵.10、B.【解題分析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權平均數(shù).11、C【解題分析】

解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個相連的矩形.故選C.12、D【解題分析】試題分析:△=22-4×4=-12<0,故沒有實數(shù)根;故選D.考點:根的判別式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【題目詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【題目點撥】此題主要考查了一元二次方程的定義,關鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項的系數(shù)不等于0”.14、1或5.【解題分析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【題目詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【題目點撥】此題考查了平移的性質,要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.15、1.【解題分析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標,代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【題目詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【題目點撥】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關鍵.16、y=﹣1x+1.【解題分析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【題目詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.17、1【解題分析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.18、2【解題分析】根據(jù)分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【解題分析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關于x的函數(shù)關系式;

(2)根據(jù)題意可以得到相應的不等式,從而可以解答本題;

(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質可以解答本題.【題目詳解】解:(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,則派往B地區(qū)x臺乙型聯(lián)合收割機為(30﹣x)臺,派往A、B地區(qū)的甲型聯(lián)合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【題目點撥】本題考查一次函數(shù)的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)和不等式的性質解答.20、(1);(2)【解題分析】

(1)當時,求出點C的坐標,根據(jù)四邊形為矩形,得出點B的坐標,進而求出點A即可;(2)先求出拋物線圖象與x軸的兩個交點,結合圖象即可得出.【題目詳解】解:(1)當時,函數(shù)的值為-2,∴點的坐標為∵四邊形為矩形,解方程,得.∴點的坐標為.∴點的坐標為.(2)解方程,得.由圖象可知,當時,的取值范圍是.【題目點撥】本題考查了二次函數(shù)與幾何問題,以及二次函數(shù)與不等式問題,解題的關鍵是靈活運用幾何知識,并熟悉二次函數(shù)的圖象與性質.21、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2)【解題分析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點,∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點,∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點作NH⊥x軸于點H.設OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點,∴MH=2-m.當△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點的坐標,然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點C的坐標.(2)求出線段PE長度的表達式,設D點橫坐標為t,則可以將PE表示為關于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質和勾股定理,將直線l的存在性問題轉化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應Q點的坐標.“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.22、(1)證明見解析;(1)證明見解析;(3)1.【解題分析】

(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對的弧相等得出結論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據(jù)平行線的性質得出對應邊成比例,進而得出結論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補角與余角的性質可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計算出邊的長,根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質得出對應邊成比例,進而得出結論.【題目詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點O作OM⊥AD于點M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點E,CF⊥AD于點F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長EO交AB于點H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【題目點撥】本題考查了相似三角形的判定與性質和圓的相關知識點,解題的關鍵是熟練的掌握相似三角形的判定與性質和圓的相關知識點.23、【解題分析】

根據(jù)列表法先畫出列表,再求概率.【題目詳解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12種等可能結果,其中數(shù)字之和為偶數(shù)的有4種,所以P(數(shù)字之和都是偶數(shù)).【題目點撥】此題重點考查學生對概率的應用,掌握列表法是解題的關鍵.24、(4)A高中觀點.4.446;(4)456人;(4)16【解題分析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數(shù),用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級學生數(shù)乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數(shù);(4)先計算出該班選擇“就業(yè)”觀點的人數(shù)為4人,則可判斷有4位女同學和4位男生選擇“就業(yè)”觀點,再列表展示44種等可能的結果數(shù),找出出現(xiàn)4女的結果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學生選擇A高中觀點的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學生選擇“中技”觀點的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學和4位男生選擇“就業(yè)”觀點,列表如下:共有44種等可能的結果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統(tǒng)計圖.25、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).【解題分析】

(1)先確定出OA=3,OC=2,進而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折疊的性質得出BD=2﹣AD,最后用勾股定理即可得出結論;②分三種情況利用方程的思想即可得出結論;B.①利用折疊的性質得出AE,利用勾股定理即可得出結論;②先判斷出∠APC=90°,再分情況討論計算即可.【題目詳解】解:(1)∵一次函數(shù)y=﹣1x+2的圖象與x軸,y軸分別交于點A,點C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x軸,CB⊥y軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論