河南省西華縣2024屆高考押題卷數學試題_第1頁
河南省西華縣2024屆高考押題卷數學試題_第2頁
河南省西華縣2024屆高考押題卷數學試題_第3頁
河南省西華縣2024屆高考押題卷數學試題_第4頁
河南省西華縣2024屆高考押題卷數學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省西華縣2024屆高考押題卷數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,是非零向量.若,則()A. B. C. D.2.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.3.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度4.若,則實數的大小關系為()A. B. C. D.5.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是16.設,點,,,,設對一切都有不等式成立,則正整數的最小值為()A. B. C. D.7.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.48.雙曲線的漸近線方程為()A. B.C. D.9.如圖,在中,,且,則()A.1 B. C. D.10.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.11.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.12.已知復數z滿足,則z的虛部為()A. B.i C.–1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知內角,,的對邊分別為,,.,,則_________.14.已知等差數列的前n項和為,,,則=_______.15.設為正實數,若則的取值范圍是__________.16.已知數列滿足對任意,,則數列的通項公式__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知數列滿足:,且(為非零常數,),求數列的前項和;(2)已知數列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數列是等比數列的充要條件.②求證:數列是等比數列,其中.18.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.19.(12分)己知等差數列的公差,,且,,成等比數列.(1)求使不等式成立的最大自然數n;(2)記數列的前n項和為,求證:.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.21.(12分)已知命題:,;命題:函數無零點.(1)若為假,求實數的取值范圍;(2)若為假,為真,求實數的取值范圍.22.(10分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數量積.【思路點睛】幾何圖形中向量的數量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數量積及平面幾何知識,又能考查學生的數形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.2、B【解題分析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.3、C【解題分析】

根據三角函數圖像的變換與參數之間的關系,即可容易求得.【題目詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【題目點撥】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.4、A【解題分析】

將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【題目詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【題目點撥】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大??;若真數相同,則結合對數函數的圖像或者換底公式可判斷大?。蝗粽鏀岛偷讛刀疾幌嗤?,則可與中間值如1,0比較大小.5、A【解題分析】

根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區(qū)間內值域的求解可判斷出最大值無法取得,錯誤.【題目詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【題目點撥】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區(qū)間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.6、A【解題分析】

先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【題目詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數的最小值為3.【題目點撥】本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.7、A【解題分析】

根據題意依次計算得到答案.【題目詳解】根據題意知:,,故,,.故選:.【題目點撥】本題考查了數列值的計算,意在考查學生的計算能力.8、A【解題分析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【題目詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【題目點撥】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.9、C【解題分析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【題目詳解】由,則,即,所以,又共線,則.故選:C【題目點撥】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.10、A【解題分析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【題目詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【題目點撥】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.11、D【解題分析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.12、C【解題分析】

利用復數的四則運算可得,即可得答案.【題目詳解】∵,∴,∴,∴復數的虛部為.故選:C.【題目點撥】本題考查復數的四則運算、虛部概念,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【題目詳解】由正弦定理得,,.故答案為:.【題目點撥】本題考查了正弦定理求角,三角恒等變換,屬于基礎題.14、【解題分析】

利用求出公差,結合等差數列的通項公式可求.【題目詳解】設公差為,因為,所以,即.所以.故答案為:【題目點撥】本題主要考查等差數列通項公式的求解,利用等差數列的基本量是求解這類問題的通性通法,側重考查數學運算的核心素養(yǎng).15、【解題分析】

根據,可得,進而,有,而,令,得到,再用導數法求解,【題目詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【題目點撥】本題主要考查基本不等式的應用和導數法求最值,還考查了運算求解的能力,屬于難題,16、【解題分析】

利用累加法求得數列的通項公式,由此求得的通項公式.【題目詳解】由題,所以故答案為:【題目點撥】本小題主要考查累加法求數列的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②證明見解析.【解題分析】

(1)由條件可得,結合等差數列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數列的性質,即可得到所求充要條件;②當,,,由等比數列的定義和不等式的性質,化簡變形,即可得到所求結論.【題目詳解】解:(1),,且為非零常數,,,可得,可得數列的首項為,公差為的等差數列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數列是等比數列,則,,可得,,即,又,即有,即,數列是等比數列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數列;同理可得以為首項、為公比的等比數列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數列,,,,,,,,,是以為首項,為公比的等比數列,其中.【題目點撥】本題考查新定義的理解和運用,考查等差數列和等比數列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.18、(1)(2)(3)為定值【解題分析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線19、(1);(2)證明見解析【解題分析】

(1)根據,,成等比數列,有,結合公差,,求得通項,再解不等式.(2)根據(1),用裂項相消法求和,然后研究其單調性即可.【題目詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【題目點撥】本題主要考查等差數列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.20、(1)見解析;(2)見解析【解題分析】

(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【題目詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論