河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷含解析_第1頁(yè)
河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷含解析_第2頁(yè)
河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷含解析_第3頁(yè)
河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷含解析_第4頁(yè)
河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省唐山市十一中2024年高考數(shù)學(xué)必刷試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿(mǎn)足,則=()A. B.C. D.2.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知函數(shù),則()A. B.1 C.-1 D.04.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.5.設(shè)集合,,則()A. B.C. D.6.圓錐底面半徑為,高為,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線(xiàn)的距離的最大值是()A. B. C. D.7.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-8.半正多面體(semiregularsolid)亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線(xiàn)部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.9.已知數(shù)列滿(mǎn)足,且,則的值是()A. B. C.4 D.10.已知實(shí)數(shù),滿(mǎn)足約束條件,則的取值范圍是()A. B. C. D.11.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.12.的展開(kāi)式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.180二、填空題:本題共4小題,每小題5分,共20分。13.已知二項(xiàng)式的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開(kāi)式中第四項(xiàng)的系數(shù)__________.14.已知實(shí)數(shù)滿(mǎn)足,則的最大值為_(kāi)_______.15.函數(shù)在處的切線(xiàn)方程是____________.16.設(shè),滿(mǎn)足約束條件,則的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過(guò)的直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線(xiàn)的普通方程;(2)求的值.18.(12分)如圖,空間幾何體中,是邊長(zhǎng)為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.19.(12分)已知橢圓,過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線(xiàn)的方程;(2)設(shè)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明:直線(xiàn)過(guò)軸上的定點(diǎn).20.(12分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),規(guī)定凡在該超市購(gòu)物滿(mǎn)400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.21.(12分)在中,角的對(duì)邊分別為,且滿(mǎn)足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.22.(10分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.2、B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在上只有一個(gè)極大值也是最大值,顯然時(shí),,時(shí),,因此要使函數(shù)有兩個(gè)零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.3、A【解析】

由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問(wèn)題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)所給函數(shù)解析式,畫(huà)出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個(gè)零點(diǎn);對(duì)于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對(duì)于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫(huà)出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個(gè)零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個(gè)零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫(huà)法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.5、A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過(guò)的軸截面如圖:,過(guò)作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線(xiàn)面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.7、A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.8、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長(zhǎng),可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個(gè)三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀(guān)圖置于棱長(zhǎng)為2的正方體中,由三視圖可知,該幾何體的棱長(zhǎng)為,它是由棱長(zhǎng)為2的正方體沿各棱中點(diǎn)截去8個(gè)三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對(duì)于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.9、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類(lèi)問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類(lèi)討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程.10、B【解析】

畫(huà)出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線(xiàn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線(xiàn)性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).11、A【解析】

根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.12、D【解析】

求的展開(kāi)式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開(kāi)式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開(kāi)式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先令可得其展開(kāi)式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開(kāi)式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開(kāi)式的通項(xiàng)為,令,則其展開(kāi)式中的第4項(xiàng)的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)需要區(qū)分展開(kāi)式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.14、【解析】

作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線(xiàn)的斜率,當(dāng)直線(xiàn)過(guò)時(shí),直線(xiàn)的斜率取得最大值,代入點(diǎn)A的坐標(biāo)可得答案.【詳解】畫(huà)出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點(diǎn),目標(biāo)函數(shù)表示點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線(xiàn)的斜率,當(dāng)直線(xiàn)過(guò)時(shí),直線(xiàn)的斜率取得最大值,此時(shí)的最大值為.故答案為:.【點(diǎn)睛】本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.15、【解析】

求出和的值,利用點(diǎn)斜式可得出所求切線(xiàn)的方程.【詳解】,則,,.因此,函數(shù)在處的切線(xiàn)方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線(xiàn)方程,考查計(jì)算能力,屬于基礎(chǔ)題.16、29【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過(guò)點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線(xiàn)性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線(xiàn)是實(shí)線(xiàn)還是虛線(xiàn),其次確定目標(biāo)函數(shù)的幾何意義,是求直線(xiàn)的截距、兩點(diǎn)間距離的平方、直線(xiàn)的斜率、還是點(diǎn)到直線(xiàn)的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1):,:;(2)【解析】

(1)根據(jù)點(diǎn)斜式寫(xiě)出直線(xiàn)的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線(xiàn)的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程,結(jié)合直線(xiàn)參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線(xiàn)的普通方程為.(2)直線(xiàn)的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線(xiàn)的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點(diǎn)睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線(xiàn)參數(shù)方程,考查直線(xiàn)參數(shù)的幾何意義,屬于中檔題.18、(1)證明見(jiàn)解析(2)【解析】

(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明線(xiàn)面平行以及向量法求二面角的余弦值,考查學(xué)生的運(yùn)算能力,在做此類(lèi)題時(shí),一定要準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo).19、(1)或;(2)見(jiàn)解析【解析】

(1)由已知條件利用點(diǎn)斜式設(shè)出直線(xiàn)的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線(xiàn)的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線(xiàn)的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線(xiàn)的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線(xiàn)的斜率存在,則可設(shè)直線(xiàn)的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿(mǎn)足直線(xiàn)與橢圓相交,故所求直線(xiàn)方程為或.(也可聯(lián)立直線(xiàn)與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線(xiàn)的方程為.由得,由,解得,,當(dāng)時(shí),,故直線(xiàn)恒過(guò)定點(diǎn).【點(diǎn)睛】此題考查的是直線(xiàn)與橢圓的位置關(guān)系中的過(guò)定點(diǎn)問(wèn)題,計(jì)算過(guò)程較復(fù)雜,屬于難題.20、(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個(gè)值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎(jiǎng)停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.21、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)運(yùn)用正弦定理和二角和的正弦公式,化簡(jiǎn),即可求出角的大?。唬á颍┩ㄟ^(guò)面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點(diǎn)睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論