河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)
河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)
河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)
河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)
河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省唐山一中等五校2024屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在上的偶函數(shù),對(duì),,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.2.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.23.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④4.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.5.“幻方”最早記載于我國(guó)公元前500年的春秋時(shí)期《大戴禮》中.“階幻方”是由前個(gè)正整數(shù)組成的—個(gè)階方陣,其各行各列及兩條對(duì)角線所含的個(gè)數(shù)之和(簡(jiǎn)稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.456.設(shè)是虛數(shù)單位,則()A. B. C. D.7.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.9.已知向量與的夾角為,,,則()A. B.0 C.0或 D.10.雙曲線的漸近線方程為()A. B. C. D.11.已知雙曲線的焦距是虛軸長(zhǎng)的2倍,則雙曲線的漸近線方程為()A. B. C. D.12.使得的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)和橢圓的右焦點(diǎn)重合,直線過(guò)拋物線的焦點(diǎn)與拋物線交于、兩點(diǎn)和橢圓交于、兩點(diǎn),為拋物線準(zhǔn)線上一動(dòng)點(diǎn),滿足,,當(dāng)面積最大時(shí),直線的方程為_(kāi)_____.14.函數(shù)的值域?yàn)開(kāi)________.15.若直線與直線交于點(diǎn),則長(zhǎng)度的最大值為_(kāi)___.16.已知,滿足不等式組,則的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).18.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對(duì)于任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.20.(12分)如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的實(shí)數(shù)m,都有,并證明你的結(jié)論.21.(12分)如圖,在正四棱錐中,,,為上的四等分點(diǎn),即.(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值.22.(10分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為、,與直線的交點(diǎn)為,求線段的長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)椋?,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.2、D【解析】

由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.3、C【解析】

分四類情況進(jìn)行討論,然后畫出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒(méi)有交點(diǎn),即沒(méi)有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.4、A【解析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.5、B【解析】

計(jì)算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點(diǎn)睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.6、A【解析】

利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.7、A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)椋越獾茫蔬xA.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對(duì)于離心率求解問(wèn)題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.8、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).9、B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長(zhǎng)平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于容易題.11、A【解析】

根據(jù)雙曲線的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),以及雙曲線的漸近線方程.12、B【解析】二項(xiàng)式展開(kāi)式的通項(xiàng)公式為,若展開(kāi)式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)均值不等式得到,,根據(jù)等號(hào)成立條件得到直線的傾斜角為,計(jì)算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當(dāng)且僅當(dāng),等號(hào)成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點(diǎn)睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.14、【解析】

利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時(shí),,當(dāng)時(shí),,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域?yàn)椋海军c(diǎn)睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意可知,直線與直線分別過(guò)定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過(guò)定點(diǎn),直線可化為,所以其過(guò)定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過(guò)交點(diǎn)的直線系方程、動(dòng)點(diǎn)的軌跡問(wèn)題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.16、【解析】

畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案不唯一具體見(jiàn)解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對(duì)函數(shù)進(jìn)行求導(dǎo)后得,對(duì)分三種情況進(jìn)行一級(jí)討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.【詳解】解:(1)曲線在點(diǎn)處的切線方程為,即.令切線與曲線相切于點(diǎn),則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時(shí),恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個(gè)零點(diǎn);②當(dāng)時(shí),在R上沒(méi)有零點(diǎn);③當(dāng)時(shí),令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤簦瑒t,在上沒(méi)有零點(diǎn);ⅱ)若,則有且僅有一個(gè)零點(diǎn);ⅲ)若,則.,令,則,∴當(dāng)時(shí),單調(diào)遞增,.∴又∵,∴在R上恰有兩個(gè)零點(diǎn),綜上所述,當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)或時(shí),函數(shù)恰有一個(gè)零點(diǎn);當(dāng)時(shí),恰有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點(diǎn)等知識(shí),求解切線有關(guān)問(wèn)題時(shí),一定要明確切點(diǎn)坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點(diǎn)個(gè)數(shù),此時(shí)如果用到零點(diǎn)存在定理,必需說(shuō)明在區(qū)間內(nèi)單調(diào)且找到兩個(gè)端點(diǎn)值的函數(shù)值相乘小于0,才算完整的解法.18、(1)an=2n【解析】

(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項(xiàng)和公差,即可得出結(jié)果.(2)利用裂項(xiàng)相消法求出數(shù)列的和.【詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19、(1)(2)【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點(diǎn)睛】本小題考查了絕對(duì)值不等式,絕對(duì)值三角不等式和函數(shù)最值問(wèn)題,考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.20、(1);(2)存在,Q為線段中點(diǎn)【解析】

解法一:(1)作出平面與平面的交線,可證平面,計(jì)算,,得出,從而得出的大小;(2)證明平面,故而可得當(dāng)Q為線段的中點(diǎn)時(shí).解法二,以為原點(diǎn),以為建立空間直角坐標(biāo)系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設(shè)上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設(shè)與平面的公共點(diǎn)為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點(diǎn),,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當(dāng)Q為線段中點(diǎn)時(shí),對(duì)于任意的實(shí)數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標(biāo)系,則,,所以,,,又由,,則為平面的一個(gè)法向量,設(shè)直線AP與平面所成角為,則,故當(dāng)時(shí),直線AP與平面所成角為.(2)若在上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,則,,依題意,對(duì)于任意的實(shí)數(shù)要使,等價(jià)于,即,解得,即當(dāng)Q為線段中點(diǎn)時(shí),對(duì)于任意的實(shí)數(shù),都有.【點(diǎn)睛】本題考查了線面垂直的判定定理、線面角的計(jì)算,考查了空間向量在立體幾何中的應(yīng)用,屬于中檔題.21、(1)答案見(jiàn)解析.(2)【解析】

(1)根據(jù)題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以為原點(diǎn)建立直角坐標(biāo)系,求出面的法向量為,的法向量為,利用空間向量的數(shù)量積即可求解.【詳解】(1)由由因?yàn)槭钦睦忮F,故于

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論