上海市市西初級中學2024年高考數(shù)學倒計時模擬卷含解析_第1頁
上海市市西初級中學2024年高考數(shù)學倒計時模擬卷含解析_第2頁
上海市市西初級中學2024年高考數(shù)學倒計時模擬卷含解析_第3頁
上海市市西初級中學2024年高考數(shù)學倒計時模擬卷含解析_第4頁
上海市市西初級中學2024年高考數(shù)學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市市西初級中學2024年高考數(shù)學倒計時模擬卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱2.已知向量,若,則實數(shù)的值為()A. B. C. D.3.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.若為虛數(shù)單位,則復數(shù),則在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種6.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50507.已知復數(shù)z,則復數(shù)z的虛部為()A. B. C.i D.i8.已知符號函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]9.設,,,則的大小關系是()A. B. C. D.10.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?11.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到12.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.14.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.15.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實數(shù)__________.16.設函數(shù)在區(qū)間上的值域是,則的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設bn=an?3n,求數(shù)列{bn}的前n項和Tn.18.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.19.(12分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:20.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.21.(12分)在中,、、的對應邊分別為、、,已知,,.(1)求;(2)設為中點,求的長.22.(10分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調(diào)性,屬于基礎題.2、D【解析】

由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數(shù)量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通??傻玫絻蓚€向量的數(shù)量積為0,繼而結(jié)合條件進行化簡、整理.3、A【解析】

根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.4、B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內(nèi)對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎題.5、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎題.6、C【解析】

因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學生邏輯推理,數(shù)學運算的能力,屬于中檔題.7、B【解析】

利用復數(shù)的運算法則、虛部的定義即可得出【詳解】,則復數(shù)z的虛部為.故選:B.【點睛】本題考查了復數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.8、A【解析】

根據(jù)符號函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.9、A【解析】

選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.10、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.11、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.12、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】乙不輸?shù)母怕蕿?,?14、【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.15、【解析】

根據(jù)切線的斜率為,利用導數(shù)列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數(shù)求解曲線的切線方程有關問題,屬于基礎題.16、.【解析】

配方求出頂點,作出圖像,求出對應的自變量,結(jié)合函數(shù)圖像,即可求解.【詳解】,頂點為因為函數(shù)的值域是,令,可得或.又因為函數(shù)圖象的對稱軸為,且,所以的取值范圍為.故答案為:.【點睛】本題考查函數(shù)值域,考查數(shù)形結(jié)合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)先設等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結(jié)果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學運算能力.屬于中檔題.18、(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數(shù)求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設,∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當且僅當或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.19、(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系【解析】

(1)利用等高條形圖中兩個深顏色條的高比較得出性別與霧霾天外出戴口罩有關系;(2)填寫列聯(lián)表即可;(3)由表中數(shù)據(jù),計算觀測值,對照臨界值得出結(jié)論.【詳解】解:(1)在等高條形圖中,兩個深色條的高分別表示女性和男性中霧霾天外出戴口罩的頻率,比較圖中兩個深色條的高可以發(fā)現(xiàn),女性中霧霾天外出帶口罩的頻率明顯高于男性中霧霾天外出帶口罩的頻率,因此可以認為性別與霧霾天外出帶口罩有關系.(2)列聯(lián)表如下:戴口罩不戴口罩合計女性男性合計(3)由(2)中數(shù)據(jù)可得:.所以,在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系.【點睛】本題考查了列聯(lián)表與獨立性檢驗的應用問題,也考查了登高條形圖的應用問題,屬于基礎題.20、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論