廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西南寧市金倫中學(xué)、華僑、新橋、羅圩中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩條不重合的直線和,兩個(gè)不重合的平面和,下列四個(gè)說(shuō)法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號(hào)為()A.②④ B.③④ C.④ D.①③2.點(diǎn)是空間直角坐標(biāo)系中的一點(diǎn),過(guò)點(diǎn)作平面的垂線,垂足為,則點(diǎn)的坐標(biāo)為()A.(1,0,0) B. C. D.3.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.64.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個(gè)半圓,在扇形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是()A. B. C. D.5.已知圓與圓有3條公切線,則()A. B.或 C. D.或6.在△ABC中,AC,BC=1,∠B=45°,則∠A=()A.30° B.60° C.30°或150° D.60°或120°7.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項(xiàng)均有可能8.若正數(shù)x,y滿(mǎn)足x+3y=5xy,則3x+4y的最小值是()A. B. C.5 D.69.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題中正確的是()A.若α∥β,mα,nβ,則m∥n B.若α⊥β,mα,則m⊥βC.若α⊥β,mα,nβ,則m⊥n D.若α∥β,mα,則m∥β10.若集合,,則(

)A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù),的最大值為,則的值是________.12.若,則的取值范圍是________.13.已知向量,則________14.已知的內(nèi)角、、的對(duì)邊分別為、、,若,,且的面積是,___________.15.已知數(shù)列滿(mǎn)足,,,則數(shù)列的通項(xiàng)公式為_(kāi)_______.16.把“五進(jìn)制”數(shù)轉(zhuǎn)化為“十進(jìn)制”數(shù)是_____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.18.在一次人才招聘會(huì)上,有A、B兩家公司分別開(kāi)出了它們的工資標(biāo)準(zhǔn):A公司允諾第一年月工資數(shù)為1500元,以后每年月工資比上一年月工資增加230元;B公司允諾第一年月工資數(shù)為2000元,以后每年月工資在上一年的月工資增加基礎(chǔ)上遞增5%,設(shè)某人年初被A、B兩家公司同時(shí)錄取,試問(wèn):(1)若該人分別在A公司或B公司連續(xù)工作年,則他在第年的月工資收入分別是多少?(2)該人打算連續(xù)在一家公司工作10年,僅從工資收入總量較多作為應(yīng)聘的標(biāo)準(zhǔn)(不計(jì)其它因素),該人應(yīng)該選擇哪家公司,為什么?(3)在A公司工作比在B公司工作的月工資收入最多可以多多少元(精確到1元),并說(shuō)明理由.19.已知直角梯形中,,,,,,過(guò)作,垂足為,分別為的中點(diǎn),現(xiàn)將沿折疊,使得.(1)求證:(2)在線段上找一點(diǎn),使得,并說(shuō)明理由.20.?dāng)?shù)列中,,(為常數(shù)).(1)若,,成等差數(shù)列,求的值;(2)是否存在,使得為等比數(shù)列?并說(shuō)明理由.21.已知在直角三角形ABC中,,(如右圖所示)(Ⅰ)若以AC為軸,直角三角形ABC旋轉(zhuǎn)一周,試說(shuō)明所得幾何體的結(jié)構(gòu)特征并求所得幾何體的表面積.(Ⅱ)一只螞蟻在問(wèn)題(Ⅰ)形成的幾何體上從點(diǎn)B繞著幾何體的側(cè)面爬行一周回到點(diǎn)B,求螞蟻爬行的最短距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論,逐項(xiàng)判斷出各項(xiàng)的真假,即可求出.【詳解】對(duì)①,若,,,則或和相交,所以①錯(cuò)誤;對(duì)②,若,,則或,所以②錯(cuò)誤;對(duì)③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯(cuò)誤;對(duì)④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【點(diǎn)睛】本題主要考查有關(guān)線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論的理解和應(yīng)用,屬于基礎(chǔ)題.2、B【解析】

根據(jù)空間直角坐標(biāo)系的坐標(biāo)關(guān)系,即可求得點(diǎn)的坐標(biāo).【詳解】空間直角坐標(biāo)系中點(diǎn)過(guò)點(diǎn)作平面的垂線,垂足為,可知故選:B【點(diǎn)睛】本題考查了空間直角坐標(biāo)系及坐標(biāo)關(guān)系,屬于基礎(chǔ)題.3、D【解析】

根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開(kāi)后再根據(jù)和已知條件計(jì)算.【詳解】因?yàn)樵诜较蛏系耐队盀椋裕?故選D.【點(diǎn)睛】本題主要考查向量模有關(guān)的計(jì)算,常用公式有,.4、A【解析】試題分析:設(shè)扇形半徑為,此點(diǎn)取自陰影部分的概率是,故選B.考點(diǎn):幾何概型.【方法點(diǎn)晴】本題主要考查幾何概型,綜合性較強(qiáng),屬于較難題型.本題的總體思路較為簡(jiǎn)單:所求概率值應(yīng)為陰影部分的面積與扇形的面積之比.但是,本題的難點(diǎn)在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類(lèi)圖形面積應(yīng)注意切割分解,“多還少補(bǔ)”.5、B【解析】

由兩圓有3條公切線,可知兩圓外切,則圓心距等于兩圓半徑之和,求解即可.【詳解】由題意,圓與圓外切,所以,即,解得或.【點(diǎn)睛】本題考查了兩圓外切的性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】

直接利用正弦定理求出sinA的大小,根據(jù)大邊對(duì)大角可求A為銳角,即可得解A的值.【詳解】因?yàn)椋骸鰽BC中,BC=1,AC,∠B=45°,所以:,sinA.因?yàn)椋築C<AC,可得:A為銳角,所以:A=30°.故選:A.【點(diǎn)評(píng)】本題考查正弦定理在解三角形中的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.7、B【解析】

由正弦定理化簡(jiǎn)已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡(jiǎn)得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.8、C【解析】

由已知可得,則,所以的最小值,應(yīng)選答案C.9、D【解析】

在中,與平行或異面;在中,與相交、平行或;在中,與相交、平行或異面;在中,由線面平行的性質(zhì)定理得.【詳解】由,是兩條不同的直線,,是兩個(gè)不同的平面,知:在中,若,,,則與平行或異面,故錯(cuò)誤;在中,若,,則與相交、平行或,故錯(cuò)誤;在中,若,,,則與相交、平行或異面,故錯(cuò)誤;在中,若,,則由線面平行的性質(zhì)定理得,故正確.故選.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.10、B【解析】

通過(guò)集合B中,用列舉法表示出集合B,再利用交集的定義求出.【詳解】由題意,集合,所以故答案為:B【點(diǎn)睛】本題主要考查了集合的表示方法,以及集合的運(yùn)算,其中熟記集合的表示方法,以及準(zhǔn)確利用集合的運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用兩角差的正弦公式化簡(jiǎn)函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【點(diǎn)睛】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.12、【解析】

利用反函數(shù)的運(yùn)算法則,定義及其性質(zhì),求解即可.【詳解】由,得所以,又因?yàn)?,所?故答案為:【點(diǎn)睛】本題考查反余弦函數(shù)的運(yùn)算法則,反函數(shù)的定義域,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.13、2【解析】

由向量的模長(zhǎng)公式,計(jì)算得到答案.【詳解】因?yàn)橄蛄?,所以,所以答案?【點(diǎn)睛】本題考查向量的模長(zhǎng)公式,屬于簡(jiǎn)單題.14、【解析】

利用同角三角函數(shù)計(jì)算出的值,利用三角形的面積公式和條件可求出、的值,再利用余弦定理求出的值.【詳解】,,,且的面積是,,,,,由余弦定理得,.故答案為.【點(diǎn)睛】本題考查利用余弦定理解三角形,同時(shí)也考查了同角三角函數(shù)的基本關(guān)系、三角形面積公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.15、.【解析】

由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項(xiàng)和公比,可求出數(shù)列的通項(xiàng)公式,進(jìn)而求出數(shù)列的通項(xiàng)公式.【詳解】設(shè),整理得,對(duì)比可得,,即,且,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,,因此,,故答案為.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,解題時(shí)要結(jié)合遞推式的結(jié)構(gòu)選擇合適的方法來(lái)求解,同時(shí)要注意等差數(shù)列和等比數(shù)列定義的應(yīng)用,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.16、194【解析】由.故答案為:194.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關(guān)系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域?yàn)椋骸军c(diǎn)睛】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關(guān)系式,三角函數(shù)性質(zhì),熟記公式,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題18、(1)在A公司第年收入為;在B公司連續(xù)工作年收入為;(2)應(yīng)選擇A公司,理由見(jiàn)詳解;(3)827;理由見(jiàn)詳解.【解析】

(1)先分別記該人在A公司第年收入為,在B公司連續(xù)工作年收入為,根據(jù)題中條件,即可直接得出結(jié)果;(2)根據(jù)等差數(shù)列與等比數(shù)列的求和公式,分別計(jì)算前的和,即可得出結(jié)果;(3)先令,將原問(wèn)題轉(zhuǎn)化為求的最大值,進(jìn)而可求出結(jié)果.【詳解】(1)記該人在A公司第年收入為,在B公司連續(xù)工作年收入為,由題意可得:,,,;(2)由(1),當(dāng)時(shí),該人在A公司工資收入的總量為:(元);該人在B公司工資收入的總量為:(元)顯然A公司工資總量高,所以應(yīng)選擇A公司;(3)令,則原問(wèn)題即等價(jià)于求的最大值;當(dāng)時(shí),,若,則,即,解得;又,所以,因此,當(dāng)時(shí),;當(dāng)時(shí),.所以是數(shù)列的最大項(xiàng),(元),即在A公司工作比在B公司工作的月工資收入最多可以多元.【點(diǎn)睛】本題主要考查數(shù)列的應(yīng)用,熟記等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式即可,屬于常考題型.19、(1)見(jiàn)解析(2)【解析】試題分析:(Ⅰ)由已知得:面面;(II)分析可知,點(diǎn)滿(mǎn)足時(shí),面BDR⊥面BDC.

理由如下先計(jì)算再求得,

,再證面面面.試題解析:(Ⅰ)由已知得:面面

(II)分析可知,點(diǎn)滿(mǎn)足時(shí),面BDR⊥面BDC.

理由如下:取中點(diǎn),連接

容易計(jì)算在中∵可知,

∴在中,

又在中,為中點(diǎn)面,

∴面面.20、(Ⅰ)p=1;(Ⅱ)存在實(shí)數(shù),使得{an}為等比數(shù)列【解析】

(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差數(shù)列列式求p的值;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,可得,求解p值,驗(yàn)證得答案.【詳解】(Ⅰ)由a1=1,,得,,則,,,.由,,a4成等差數(shù)列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,則,即,則1p=p+1,即p=1.此時(shí),,∴,而,又,所以,而,且,∴存在實(shí)數(shù),使得{an}為以1為首項(xiàng),以1為公比的等比數(shù)列.【點(diǎn)睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的性質(zhì),是中檔題.21、(Ⅰ)幾何體為以為半徑,高的圓錐,(Ⅱ)【解析】

(Ⅰ)若以為軸,直角三角形旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,由圓

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論