江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省全南縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.解分式方程,分以下四步,其中,錯(cuò)誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個(gè)整式方程,得x=1D.原方程的解為x=12.某居委會(huì)組織兩個(gè)檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進(jìn)行抽查.各組隨機(jī)抽取轄區(qū)內(nèi)某三個(gè)小區(qū)中的一個(gè)進(jìn)行檢查,則兩個(gè)組恰好抽到同一個(gè)小區(qū)的概率是()A. B. C. D.3.-5的倒數(shù)是A. B.5 C.- D.-54.如果關(guān)于x的分式方程有負(fù)數(shù)解,且關(guān)于y的不等式組無解,則符合條件的所有整數(shù)a的和為()A.﹣2 B.0 C.1 D.35.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為()A.2 B.2 C.3 D.6.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠BED的正切值等于()A. B. C.2 D.7.如圖,在中,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長的最大值與最小值的和是()A. B. C. D.8.如圖:將一個(gè)矩形紙片,沿著折疊,使點(diǎn)分別落在點(diǎn)處.若,則的度數(shù)為()A. B. C. D.9.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.10.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.兩個(gè)等腰直角三角板如圖放置,點(diǎn)F為BC的中點(diǎn),AG=1,BG=3,則CH的長為__________.12.如圖,點(diǎn)D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.13.27的立方根為.14.計(jì)算﹣的結(jié)果為_____.15.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.16.因式分解:3a3﹣3a=_____.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時(shí),求BB′的長;(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時(shí),求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)18.(8分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,以O(shè)A為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長線上取點(diǎn)F,使得BF=EF.(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.19.(8分)為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測試同時(shí)聽寫100個(gè)漢字,每正確聽寫出一個(gè)漢字得1分,本次決賽,學(xué)生成績?yōu)椋ǚ郑?,且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:組別

成績(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據(jù)表格提供的信息,解答以下問題:(1)本次決賽共有名學(xué)生參加;(2)直接寫出表中a=,b=;(3)請補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.20.(8分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)(1)求a、b的值;(2)過動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.21.(8分)如圖,某中學(xué)數(shù)學(xué)課外學(xué)習(xí)小組想測量教學(xué)樓的高度,組員小方在處仰望教學(xué)樓頂端處,測得,小方接著向教學(xué)樓方向前進(jìn)到處,測得,已知,,.(1)求教學(xué)樓的高度;(2)求的值.22.(10分)已知點(diǎn)P,Q為平面直角坐標(biāo)系xOy中不重合的兩點(diǎn),以點(diǎn)P為圓心且經(jīng)過點(diǎn)Q作⊙P,則稱點(diǎn)Q為⊙P的“關(guān)聯(lián)點(diǎn)”,⊙P為點(diǎn)Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點(diǎn)E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點(diǎn)”為______;(2)若點(diǎn)P(2,0),點(diǎn)Q(3,n),⊙Q為點(diǎn)P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點(diǎn)D(0,2),點(diǎn)H(m,2),⊙D是點(diǎn)H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點(diǎn)A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍.23.(12分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點(diǎn),與AB邊交于點(diǎn)D.(1)求拋物線的函數(shù)表達(dá)式;(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;②當(dāng)S最大時(shí),在拋物線的對稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.24.如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,連接AD,過D作AC的垂線,交AC邊于點(diǎn)E,交AB邊的延長線于點(diǎn)F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先去分母解方程,再檢驗(yàn)即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【點(diǎn)睛】本題考查了分式方程的求解與檢驗(yàn),在分式方程中,一般求得的x值都需要進(jìn)行檢驗(yàn)2、C【解析】分析:將三個(gè)小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個(gè)小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個(gè)組恰好抽到同一個(gè)小區(qū)的結(jié)果有3種,所以兩個(gè)組恰好抽到同一個(gè)小區(qū)的概率為.故選:C.點(diǎn)睛:此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】

若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.4、B【解析】

解關(guān)于y的不等式組,結(jié)合解集無解,確定a的范圍,再由分式方程有負(fù)數(shù)解,且a為整數(shù),即可確定符合條件的所有整數(shù)a的值,最后求所有符合條件的值之和即可.【詳解】由關(guān)于y的不等式組,可整理得∵該不等式組解集無解,∴2a+4≥﹣2即a≥﹣3又∵得x=而關(guān)于x的分式方程有負(fù)數(shù)解∴a﹣4<1∴a<4于是﹣3≤a<4,且a為整數(shù)∴a=﹣3、﹣2、﹣1、1、1、2、3則符合條件的所有整數(shù)a的和為1.故選B.【點(diǎn)睛】本題考查的是解分式方程與解不等式組,求各種特殊解的前提都是先求出整個(gè)解集,再在解集中求特殊解,了解求特殊解的方法是解決本題的關(guān)鍵.5、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點(diǎn)是P點(diǎn),此時(shí)PD+PE最小,∵在AC上取任何一點(diǎn)(如Q點(diǎn)),QD+QE都大于PD+PE(BE),∴此時(shí)PD+PE最小,此時(shí)PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是找出PD+PE最小時(shí)P點(diǎn)的位置.6、D【解析】

根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點(diǎn)睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.7、C【解析】

如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點(diǎn)睛】本題考查切線的性質(zhì)、三角形中位線定理等知識(shí),解題的關(guān)鍵是正確找到點(diǎn)PQ取得最大值、最小值時(shí)的位置,屬于中考??碱}型.8、B【解析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點(diǎn)睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.9、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點(diǎn):D.10、A【解析】分析:根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項(xiàng)正確;B、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;故選:A.點(diǎn)睛:本題考查了中心對稱圖形的特點(diǎn),屬于基礎(chǔ)題,判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

依據(jù)∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進(jìn)而得到△BFG∽△CHF,依據(jù)相似三角形的性質(zhì),即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點(diǎn),∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點(diǎn)睛】本題主要考查了相似三角形的判定與性質(zhì),在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.12、3:2【解析】因?yàn)镈E∥BC,所以,因?yàn)镋F∥AB,所以,所以,故答案為:3:2.13、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個(gè)數(shù)的立方根,用到的知識(shí)點(diǎn)為:開方與乘方互為逆運(yùn)算14、.【解析】

根據(jù)同分母分式加減運(yùn)算法則化簡即可.【詳解】原式=,故答案為.【點(diǎn)睛】本題考查了分式的加減運(yùn)算,熟記運(yùn)算法則是解題的關(guān)鍵.15、﹣18【解析】

要求代數(shù)式a3b﹣2a2b2+ab3的值,而代數(shù)式a3b﹣2a2b2+ab3恰好可以分解為兩個(gè)已知條件ab,(a﹣b)的乘積,因此可以運(yùn)用整體的數(shù)學(xué)思想來解答.【詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當(dāng)a﹣b=3,ab=﹣2時(shí),原式=﹣2×32=﹣18,故答案為:﹣18.【點(diǎn)睛】本題考查了因式分解在代數(shù)式求值中的應(yīng)用,熟練掌握因式分解的方法以及運(yùn)用整體的數(shù)學(xué)思想是解題的關(guān)鍵.16、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,進(jìn)而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)5;(2)O'(,);(3)P'(,).【解析】

(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進(jìn)而確定出點(diǎn)P的坐標(biāo),再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點(diǎn)O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對稱點(diǎn)C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時(shí),O'P+AP的值最?。唿c(diǎn)C與點(diǎn)A關(guān)于y軸對稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點(diǎn)睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),含30度角的直角三角形的性質(zhì),構(gòu)造出直角三角形是解答本題的關(guān)鍵.18、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】

(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(1)根據(jù)含30°的直角三角形的性質(zhì)證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【點(diǎn)睛】本題考查了切線的判定,等腰三角形的性質(zhì),圓周角定理,扇形的面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.19、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據(jù)第一組別的人數(shù)和百分比得出樣本容量;(2)根據(jù)樣本容量以及頻數(shù)、頻率之間的關(guān)系得出a和b的值,(3)根據(jù)a的值將圖形補(bǔ)全;(4)根據(jù)圖示可得:優(yōu)秀的人為第四和第五組的人,將兩組的頻數(shù)相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點(diǎn):頻數(shù)分布直方圖20、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時(shí)間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據(jù)題意求出點(diǎn)C的坐標(biāo),然后將點(diǎn)C和點(diǎn)B的坐標(biāo)代入直線解析式求出a和b的值;(2)、根據(jù)題意可知點(diǎn)Q在點(diǎn)A和點(diǎn)B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進(jìn)行計(jì)算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進(jìn)行計(jì)算得出t的值.試題解析:(1)、解:∵點(diǎn)C是直線l1:y=x+1與軸的交點(diǎn),∴C(0,1),∵點(diǎn)C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點(diǎn)B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點(diǎn)Q在點(diǎn)A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點(diǎn)x軸正半軸上時(shí),當(dāng)AC=P1C時(shí),∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當(dāng)P2A=P2C時(shí),易知點(diǎn)P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點(diǎn)P在x軸負(fù)半軸時(shí),AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時(shí)間t為1s,2s,或(3+)或(3﹣)s.點(diǎn)睛:本題主要考查的就是一次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)和動(dòng)點(diǎn)問題,解決這個(gè)問題的關(guān)鍵就是要能夠根據(jù)題意進(jìn)行分類討論,從而得出答案.在解決一次函數(shù)和等腰三角形問題時(shí),我們一定要根據(jù)等腰三角形的性質(zhì)來進(jìn)行分類討論,可以利用圓規(guī)來作出圖形,然后根據(jù)實(shí)際題目來求出答案.21、(1)12m;(2)【解析】

(1)利用即可求解;(2)通過三角形外角的性質(zhì)得出,則,設(shè),則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【詳解】解:(1)在中,,答:教學(xué)樓的高度為;(2)設(shè),則,故,解得:,則故.【點(diǎn)睛】本題主要考查解直角三角形,掌握勾股定理及正切,余弦的定義是解題的關(guān)鍵.22、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】

(1)根據(jù)定義,認(rèn)真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),由sin∠OBA=,得DT=DH1=,進(jìn)而求出m1=即可,②當(dāng)⊙D過點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點(diǎn)F、點(diǎn)M在⊙上,∴F、M是⊙O的“關(guān)聯(lián)點(diǎn)”,故答案為F,M.(1)如圖1,過點(diǎn)Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y=﹣x+4,知A(3,0),B(0,4)∴可得AB=5①如圖1(1),當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),連接DT.則DT⊥AB,∠DTB=90°∵sin∠OBA=,∴可得DT=DH1=,∴m1=,②如圖1(1),當(dāng)⊙D過點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=.綜合①②可得:≤m≤或≤m≤.【點(diǎn)睛】本題考查圓的新定義問題,三角函數(shù)和勾股定理的應(yīng)用,難度較大,分類討論,遷移知識(shí)理解新定義是解題關(guān)鍵.23、(1);(2)①,當(dāng)m=5時(shí),S取最大值;②滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為,,,,【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論