




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年安徽安慶重點(diǎn)達(dá)標(biāo)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=22.如圖1,將三角板的直角頂點(diǎn)放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°3.今年3月5日,十三屆全國(guó)人大一次會(huì)議在人民大會(huì)堂開(kāi)幕,會(huì)議聽(tīng)取了國(guó)務(wù)院總理李克強(qiáng)關(guān)于政府工作的報(bào)告,其中表示,五年來(lái),人民生活持續(xù)改善,脫貧攻堅(jiān)取得決定性進(jìn)展,貧困人口減少6800多萬(wàn),易地扶貧搬遷830萬(wàn)人,貧困發(fā)生率由10.2%下降到3.1%,將830萬(wàn)用科學(xué)記數(shù)法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1074.計(jì)算3×(﹣5)的結(jié)果等于()A.﹣15B.﹣8C.8D.155.如圖,正方形ABCD的邊長(zhǎng)為2cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C的方向運(yùn)動(dòng)到點(diǎn)C停止,設(shè)點(diǎn)P的運(yùn)動(dòng)路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是()A. B. C. D.6.如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°7.如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.8.如圖,實(shí)數(shù)﹣3、x、3、y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,這四個(gè)數(shù)中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q9.如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.510.甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)分別從甲地開(kāi)往乙地(轎車(chē)的平均速度大于貨車(chē)的平均速度),如圖線段OA和折線BCD分別表示兩車(chē)離甲地的距離y(單位:千米)與時(shí)間x(單位:小時(shí))之間的函數(shù)關(guān)系.則下列說(shuō)法正確的是()A.兩車(chē)同時(shí)到達(dá)乙地B.轎車(chē)在行駛過(guò)程中進(jìn)行了提速C.貨車(chē)出發(fā)3小時(shí)后,轎車(chē)追上貨車(chē)D.兩車(chē)在前80千米的速度相等11.若分式的值為零,則x的值是()A.1 B. C. D.212.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE是BC的垂直平分線,點(diǎn)E是垂足.若DC=2,AD=1,則BE的長(zhǎng)為_(kāi)_____.14.已知x+y=,xy=,則x2y+xy2的值為_(kāi)___.15.如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來(lái),D點(diǎn)落在AC上,DE交AB于點(diǎn)F,若AB=AC,DB=BF,則AF與BF的比值為_(kāi)____.16.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧交于F、G作直線FG,分別交AB,AC于點(diǎn)D、E,若AC的長(zhǎng)為4,則BC的長(zhǎng)為_(kāi)____.17.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.18.如圖,扇形的半徑為,圓心角為120°,用這個(gè)扇形圍成一個(gè)圓錐的側(cè)面,所得的圓錐的高為_(kāi)_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過(guò)其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.(1)求點(diǎn)A、B、D的坐標(biāo);(2)若△AOD與△BPC相似,求a的值;(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請(qǐng)說(shuō)明理由.20.(6分)計(jì)算:;解方程:21.(6分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過(guò)點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫(xiě)出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說(shuō)明理由.22.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長(zhǎng).23.(8分)如圖,在⊿中,,于,.⑴.求的長(zhǎng);⑵.求的長(zhǎng).24.(10分)如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D,連結(jié)BD,已知點(diǎn)A坐標(biāo)為(-1,0).求該拋物線的解析式;求梯形COBD的面積.25.(10分)無(wú)錫市新區(qū)某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為250元,每桶水的進(jìn)價(jià)是5元,規(guī)定銷(xiāo)售單價(jià)不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷(xiāo)售量p(桶)與銷(xiāo)售單價(jià)x(元)的函數(shù)圖象如圖所示.(1)求日均銷(xiāo)售量p(桶)與銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系;(2)若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷(xiāo)售單價(jià)是多少?26.(12分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個(gè)輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.27.(12分)先化簡(jiǎn),再求值:(﹣m+1)÷,其中m的值從﹣1,0,2中選?。?/p>
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.2、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點(diǎn):平行線的性質(zhì);三角形的外角的性質(zhì).3、C【解析】
科學(xué)記數(shù)法,是指把一個(gè)大于10(或者小于1)的整數(shù)記為a×10n的形式(其中1≤|a|<10|)的記數(shù)法.【詳解】830萬(wàn)=8300000=8.3×106.故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):科學(xué)記數(shù)法.解題關(guān)鍵點(diǎn):理解科學(xué)記數(shù)法的意義.4、A【解析】
按照有理數(shù)的運(yùn)算規(guī)則計(jì)算即可.【詳解】原式=-3×5=-15,故選擇A.【點(diǎn)睛】本題考查了有理數(shù)的運(yùn)算,注意符號(hào)不要搞錯(cuò).5、B【解析】
△ADP的面積可分為兩部分討論,由A運(yùn)動(dòng)到B時(shí),面積逐漸增大,由B運(yùn)動(dòng)到C時(shí),面積不變,從而得出函數(shù)關(guān)系的圖象.【詳解】解:當(dāng)P點(diǎn)由A運(yùn)動(dòng)到B點(diǎn)時(shí),即0≤x≤2時(shí),y=×2x=x,當(dāng)P點(diǎn)由B運(yùn)動(dòng)到C點(diǎn)時(shí),即2<x<4時(shí),y=×2×2=2,符合題意的函數(shù)關(guān)系的圖象是B;故選B.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)函數(shù)圖象問(wèn)題,用到的知識(shí)點(diǎn)是三角形的面積、一次函數(shù),在圖象中應(yīng)注意自變量的取值范圍.6、C【解析】分析:由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對(duì)角可得答案.詳解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選C.點(diǎn)睛:本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).7、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點(diǎn)E為BC的中點(diǎn),∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長(zhǎng)是△ABC邊長(zhǎng)的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.8、D【解析】∵實(shí)數(shù)-3,x,3,y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,
∴原點(diǎn)在點(diǎn)M與N之間,
∴這四個(gè)數(shù)中絕對(duì)值最大的數(shù)對(duì)應(yīng)的點(diǎn)是點(diǎn)Q.
故選D.9、C【解析】
根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【點(diǎn)睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對(duì)有關(guān)于四邊形的性質(zhì)的知識(shí)有一系統(tǒng)的掌握.10、B【解析】
①根據(jù)函數(shù)的圖象即可直接得出結(jié)論;②求得直線OA和DC的解析式,求得交點(diǎn)坐標(biāo)即可;③由圖象無(wú)法求得B的橫坐標(biāo);④分別進(jìn)行運(yùn)算即可得出結(jié)論.【詳解】由題意和圖可得,轎車(chē)先到達(dá)乙地,故選項(xiàng)A錯(cuò)誤,轎車(chē)在行駛過(guò)程中進(jìn)行了提速,故選項(xiàng)B正確,貨車(chē)的速度是:300÷5=60千米/時(shí),轎車(chē)在BC段對(duì)應(yīng)的速度是:千米/時(shí),故選項(xiàng)D錯(cuò)誤,設(shè)貨車(chē)對(duì)應(yīng)的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車(chē)對(duì)應(yīng)的函數(shù)解析式為y=60x,設(shè)CD段轎車(chē)對(duì)應(yīng)的函數(shù)解析式為y=ax+b,,得,即CD段轎車(chē)對(duì)應(yīng)的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車(chē)出發(fā)3.9小時(shí)后,轎車(chē)追上貨車(chē),故選項(xiàng)C錯(cuò)誤,故選:B.【點(diǎn)睛】此題考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵在于利用題中信息列出函數(shù)解析式11、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.12、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過(guò)A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點(diǎn)睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點(diǎn)睛:本題考查的是線段的垂直平分線的性質(zhì)、角平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.14、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.15、5【解析】
先利用旋轉(zhuǎn)的性質(zhì)得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【詳解】∵如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來(lái),D點(diǎn)落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的性質(zhì),熟練掌握這些知識(shí)點(diǎn)并靈活運(yùn)用是解題的關(guān)鍵.16、【解析】
連接CD在根據(jù)垂直平分線的性質(zhì)可得到△ADC為等腰直角三角形,結(jié)合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點(diǎn)睛】此題主要考查垂直平分線的性質(zhì),解題關(guān)鍵在于連接CD利用垂直平分線的性質(zhì)證明△ADC為等腰直角三角形17、60°.【解析】
先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點(diǎn)睛】本題考查的是特殊角的三角函數(shù)值及三角形內(nèi)角和定理,比較簡(jiǎn)單.18、4cm【解析】
求出扇形的弧長(zhǎng),除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長(zhǎng)==4π,
圓錐的底面半徑為4π÷2π=2,
故圓錐的高為:=4,
故答案為4cm.【點(diǎn)睛】本題考查了圓錐的計(jì)算,重點(diǎn)考查了扇形的弧長(zhǎng)公式;圓的周長(zhǎng)公式;用到的知識(shí)點(diǎn)為:圓錐的弧長(zhǎng)等于底面周長(zhǎng).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標(biāo),得出拋物線對(duì)稱軸x=,AO=a,OD=3a,代入求得頂點(diǎn)C(,-),從而得PB=3-=,PC=;再分情況討論:①當(dāng)△AOD∽△BPC時(shí),根據(jù)相似三角形性質(zhì)得,
解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點(diǎn)M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點(diǎn)C也在此圓上,則MC=MB,根據(jù)兩點(diǎn)間的距離公式得一個(gè)關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),∴A(a,0),B(3,0),當(dāng)x=0時(shí),y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對(duì)稱軸x=,AO=a,OD=3a,當(dāng)x=時(shí),y=-,∴C(,-),∴PB=3-=,PC=,①當(dāng)△AOD∽△BPC時(shí),∴,即,
解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點(diǎn)M,∵D、B、O三點(diǎn)共圓,且BD為直徑,圓心為M(,a),若點(diǎn)C也在此圓上,∴MC=MB,∴,化簡(jiǎn)得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【點(diǎn)睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點(diǎn)共圓等,綜合性較強(qiáng),有一定的難度,正確進(jìn)行分析,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.20、(1)2(2)【解析】
(1)原式第一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),第三項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn),最后一項(xiàng)利用零指數(shù)冪法則計(jì)算可得到結(jié)果;(2)移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.【詳解】(1)原式==2;(2)∴【點(diǎn)睛】本題考查了實(shí)數(shù)運(yùn)算以及平方根的應(yīng)用,正確掌握相關(guān)運(yùn)算法則是解題的關(guān)鍵.21、(1)、(t+6,t);(2)、當(dāng)t=2時(shí),S有最小值是16;(3)、理由見(jiàn)解析.【解析】
(1)如圖所示,過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時(shí),S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對(duì)角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無(wú)解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.22、(1)證明見(jiàn)解析;(2)15.【解析】
(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.
(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問(wèn)題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點(diǎn)睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題.23、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長(zhǎng);(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.24、(1)(2)【解析】
(1)將A坐標(biāo)代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 園區(qū)商家安全管理制度
- 員工外出學(xué)習(xí)管理制度
- 多人活動(dòng)安全管理制度
- 售后配件發(fā)貨管理制度
- 城市配送倉(cāng)庫(kù)管理制度
- 兼職私人教練管理制度
- 完善單位各項(xiàng)管理制度
- 醫(yī)院安保日常管理制度
- 學(xué)校病例隨訪管理制度
- 大型凈水設(shè)備管理制度
- JBT 14745-2024《鎂合金壓鑄熔爐 安全要求》
- 2024年中考地理簡(jiǎn)答題技巧及答題模板
- 華為項(xiàng)目管理金種子中級(jí)培訓(xùn)教材
- 《新疆維吾爾自治區(qū)建筑安裝工程費(fèi)用定額》
- 小升初卷(試題)-2023-2024學(xué)年六年級(jí)下冊(cè)數(shù)學(xué)人教版
- 中國(guó)現(xiàn)代文學(xué)思潮智慧樹(shù)知到期末考試答案章節(jié)答案2024年杭州師范大學(xué)
- 畢業(yè)論文《1kta土霉素車(chē)間酸化、提煉、干燥工段設(shè)計(jì)》
- 《水泥用鐵質(zhì)校正料》
- 慈善公益基金會(huì)協(xié)會(huì)章程兩篇
- 醫(yī)療器械監(jiān)督管理?xiàng)l例培訓(xùn)試題
- LY/T 1612-2023甲醛釋放量檢測(cè)用1 m3氣候箱技術(shù)要求
評(píng)論
0/150
提交評(píng)論