2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第1頁(yè)
2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第2頁(yè)
2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第3頁(yè)
2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第4頁(yè)
2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年北京市第十二中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點(diǎn)為(4,6),則下列說法錯(cuò)誤的是()A.b2>4ac B.a(chǎn)x2+bx+c≤6C.若點(diǎn)(2,m)(5,n)在拋物線上,則m>n D.8a+b=02.已知二次函數(shù)的圖象如圖所示,若,是這個(gè)函數(shù)圖象上的三點(diǎn),則的大小關(guān)系是()A. B. C. D.3.下列運(yùn)算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x44.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°5.“保護(hù)水資源,節(jié)約用水”應(yīng)成為每個(gè)公民的自覺行為.下表是某個(gè)小區(qū)隨機(jī)抽查到的10戶家庭的月用水情況,則下列關(guān)于這10戶家庭的月用水量說法錯(cuò)誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸6.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)C為弧BD的中點(diǎn),若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°7.二次函數(shù)y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.98.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣39.在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.10.如圖,半徑為的中,弦,所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.因式分解:a2﹣a=_____.12.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.13.已知扇形的圓心角為120°,弧長(zhǎng)為6π,則扇形的面積是_____.14.如圖,在中,,,,,,點(diǎn)在上,交于點(diǎn),交于點(diǎn),當(dāng)時(shí),________.15.已知x+y=,xy=,則x2y+xy2的值為____.16.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則=______.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,D為⊙O上一點(diǎn),以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長(zhǎng).18.(8分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說明理由.19.(8分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長(zhǎng).20.(8分)如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在一象限,點(diǎn)P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把△AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,連接OD,PD,得△OPD。(1)當(dāng)t=時(shí),求DP的長(zhǎng)(2)在點(diǎn)P運(yùn)動(dòng)過程中,依照條件所形成的△OPD面積為S①當(dāng)t>0時(shí),求S與t之間的函數(shù)關(guān)系式②當(dāng)t≤0時(shí),要使s=,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).21.(8分)每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對(duì)雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是;(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(4)若該市約有90萬人,請(qǐng)估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).22.(10分)下面是小星同學(xué)設(shè)計(jì)的“過直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點(diǎn)A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點(diǎn)B(AB與l不垂直),以點(diǎn)A為圓心,AB為半徑作圓,與直線l交于點(diǎn)C.②連接AC,AB,延長(zhǎng)BA到點(diǎn)D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據(jù))23.(12分)已知:如圖,在平行四邊形中,的平分線交于點(diǎn),過點(diǎn)作的垂線交于點(diǎn),交延長(zhǎng)線于點(diǎn),連接,.求證:;若,,,求的長(zhǎng).24.已知一個(gè)二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點(diǎn),求這個(gè)函數(shù)解析式以及點(diǎn)C的坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】觀察可得,拋物線與x軸有兩個(gè)交點(diǎn),可得,即,選項(xiàng)A正確;拋物線開口向下且頂點(diǎn)為(4,6)可得拋物線的最大值為6,即,選項(xiàng)B正確;由題意可知拋物線的對(duì)稱軸為x=4,因?yàn)?-2=2,5-4=1,且1<2,所以可得m<n,選項(xiàng)C錯(cuò)誤;因?qū)ΨQ軸,即可得8a+b=0,選項(xiàng)D正確,故選C.點(diǎn)睛:本題主要考查了二次函數(shù)y=ax2+bx+c圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是從圖象中獲取信息,利用數(shù)形結(jié)合思想解決問題,本題難度適中.2、A【解析】

先求出二次函數(shù)的對(duì)稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對(duì)稱軸為直線,∵拋物線開口向下,∴當(dāng)時(shí),y隨x增大而增大,∵,∴故答案為:A.【點(diǎn)睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.3、D【解析】A.x4+x4=2x4,故錯(cuò)誤;B.(x2)3=x6,故錯(cuò)誤;C.(x﹣y)2=x2﹣2xy+y2,故錯(cuò)誤;D.x3?x=x4,正確,故選D.4、D【解析】

先利用鄰補(bǔ)角得到∠DCE=80°,然后根據(jù)平行線的性質(zhì)求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.5、C【解析】

根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對(duì)選項(xiàng)一一分析,即可選擇正確答案.【詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項(xiàng)錯(cuò)誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項(xiàng)錯(cuò)誤;C、極差為9﹣4=5(噸),錯(cuò)誤,故選項(xiàng)正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.6、C【解析】連接OC,因?yàn)辄c(diǎn)C為弧BD的中點(diǎn),所以∠BOC=∠DAB=50°,因?yàn)镺C=OB,所以∠ABC=∠OCB=65°,故選C.7、D【解析】

直接利用配方法得出二次函數(shù)的頂點(diǎn)式進(jìn)而得出答案.【詳解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函數(shù)y=﹣x2﹣4x+5的最大值是9,故選D.【點(diǎn)睛】此題主要考查了二次函數(shù)的最值,正確配方是解題關(guān)鍵.8、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點(diǎn)睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.9、D【解析】

如圖,∵AD=1,BD=3,∴,當(dāng)時(shí),,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項(xiàng)A、B、C的條件都不能推出DE∥BC,故選D.10、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補(bǔ)角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對(duì)的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點(diǎn)睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、a(a﹣1)【解析】

直接提取公因式a,進(jìn)而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點(diǎn)睛】此題考查公因式,難度不大12、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點(diǎn)睛:本題考查了平行線的性質(zhì)及相似三角形的性質(zhì).相似三角形的面積比等于相似比的平方.13、27π【解析】試題分析:設(shè)扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點(diǎn):扇形面積的計(jì)算.14、1【解析】

如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題,屬于中考常考題型.15、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.16、3﹣【解析】

首先設(shè)點(diǎn)B的橫坐標(biāo),由點(diǎn)B在拋物線y1=x2(x≥0)上,得出點(diǎn)B的坐標(biāo),再由平行,得出A和C的坐標(biāo),然后由CD平行于y軸,得出D的坐標(biāo),再由DE∥AC,得出E的坐標(biāo),即可得出DE和AB,進(jìn)而得解.【詳解】設(shè)點(diǎn)B的橫坐標(biāo)為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點(diǎn)睛】此題主要考查拋物線中的坐標(biāo)求解,關(guān)鍵是利用平行的性質(zhì).三、解答題(共8題,共72分)17、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結(jié)合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結(jié)合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結(jié)合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長(zhǎng)了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點(diǎn)睛:這是一道考查“圓和直線的位置關(guān)系與相似三角形的判定和性質(zhì)”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質(zhì)”是正確解答本題的關(guān)鍵.18、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對(duì)稱軸,從而得出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)C′坐標(biāo),連接BC′,與對(duì)稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長(zhǎng),從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長(zhǎng),于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對(duì)稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),則點(diǎn)C關(guān)于直線x=﹣1的對(duì)稱點(diǎn)C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點(diǎn)M只能在點(diǎn)D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,①若,則,解得DM=2,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.19、(1)見解析;(2).【解析】

(1)直接利用直角三角形的性質(zhì)得出,再利用DE∥BC,得出∠2=∠3,進(jìn)而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長(zhǎng),進(jìn)而得出EC的長(zhǎng).【詳解】(1)證明:∵AD⊥DB,點(diǎn)E為AB的中點(diǎn),∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【點(diǎn)睛】此題主要考查了直角三角形斜邊上的中線與斜邊的關(guān)系,正確得出DB,DE的長(zhǎng)是解題關(guān)鍵.20、(1)DP=;(2)①;②.【解析】

(1)先判斷出△ADP是等邊三角形,進(jìn)而得出DP=AP,即可得出結(jié)論;

(2)①先求出GH=2,進(jìn)而求出DG,再得出DH,即可得出結(jié)論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結(jié)論.【詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉(zhuǎn)得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當(dāng)t>0時(shí),如圖1,BD=OP=t,

過點(diǎn)B,D分別作x軸的垂線,垂足于F,H,過點(diǎn)B作x軸的平行線,分別交y軸于點(diǎn)E,交DH于點(diǎn)G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當(dāng)t≤0時(shí),分兩種情況:

∵點(diǎn)D在x軸上時(shí),如圖2在Rt△ABD中,,

(1)當(dāng)時(shí),如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當(dāng)時(shí),如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關(guān)鍵.21、(1)2000;(2)28.8°;(3)補(bǔ)圖見解析;(4)36萬人.【解析】分析:(1)將A選項(xiàng)人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項(xiàng)人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項(xiàng)人數(shù)所占百分比求得其人數(shù),據(jù)此補(bǔ)全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項(xiàng)人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項(xiàng)的人數(shù)為2000×25%=500,補(bǔ)全條形圖如下:(4)估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論