




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,∠A=75°,AB=6,AC=8,將△ABC沿圖中的虛線剪開,剪下的陰影三角形與原三角形不相似的是()A. B. C. D.2.對于拋物線,下列說法正確的是()A.開口向下,頂點坐標(biāo) B.開口向上,頂點坐標(biāo)C.開口向下,頂點坐標(biāo) D.開口向上,頂點坐標(biāo)3.若,那么的值是()A. B. C. D.4.如圖,正方形的邊長為,點在邊上.四邊形也為正方形,設(shè)的面積為,則()A.S=2 B.S=2.4C.S=4 D.S與BE長度有關(guān)5.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件6.如圖,一個游戲轉(zhuǎn)盤中,紅、黃、藍(lán)三個扇形的圓心角度數(shù)分別為,,.讓轉(zhuǎn)盤自由轉(zhuǎn)動,指針停止后落在黃色區(qū)域的概率是A. B. C. D.7.如圖,在邊長為的小正方形組成的網(wǎng)格中,的三個頂點在格點上,若點是的中點,則的值為()A. B. C. D.8.如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F(xiàn)是CD上的一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則下列結(jié)論中:①;②;③tan∠EAF=;④正確的是()A.①②③ B.①②④ C.①③④ D.②③④9.下列大學(xué)?;諆?nèi)部圖案中可以看成由某一個基本圖形通過平移形成的是()A. B. C. D.10.某小組作“用頻率估計概率的實驗”時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是()A.?dāng)S一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4B.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅色D.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球11.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.12.下列圖形,既是軸對稱圖形又是中心對稱圖形的是()A.正三角形 B.正五邊形 C.等腰直角三角形 D.矩形二、填空題(每題4分,共24分)13.拋物線y=ax2-4ax+4(a≠0)與y軸交于點A.過點B(0,3)作y軸的垂線l,若拋物線y=ax2-4ax+4(a≠0)與直線l有兩個交點,設(shè)其中靠近y軸的交點的橫坐標(biāo)為m,且│m│<1,則a的取值范圍是______.14.在單詞(數(shù)學(xué))中任意選擇-一個字母,選中字母“”的概率為______.15.如圖,正方形的邊長為8,點在上,交于點.若,則長為__.16.如圖,在中,,以點A為圓心,2為半徑的與BC相切于點D,交AB于點E,交AC于點F,點P是上的一點,且,則圖中陰影部分的面積為______.17.一個半徑為5cm的球形容器內(nèi)裝有水,若水面所在圓的直徑為8cm,則容器內(nèi)水的高度為_____cm.18.方程的解是__________.三、解答題(共78分)19.(8分)為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表分組頻數(shù)1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請根據(jù)圖表中所提供的信息,完成下列問題:(1)表中a=,b=,樣本成績的中位數(shù)落在范圍內(nèi);(2)請把頻數(shù)分布直方圖補(bǔ)充完整;(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?20.(8分)如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.(3)求點在函數(shù)圖象上的概率.21.(8分)如圖,在△ABC中,∠ACB=90°,D為AC的中點,DE⊥AB于點E,AC=8,AB=1.求AE的長.22.(10分)已知為實數(shù),關(guān)于的方程有兩個實數(shù)根.(1)求實數(shù)的取值范圍.(2)若,試求的值.23.(10分)如圖,在△ABC中,AB=AC,點D為BC的中點,經(jīng)過AD兩點的圓分別與AB,AC交于點E、F,連接DE,DF.(1)求證:DE=DF;(2)求證:以線段BE+CF,BD,DC為邊圍成的三角形與△ABC相似,24.(10分)在矩形ABCD中,AB=3,AD=5,E是射線DC上的點,連接AE,將△ADE沿直線AE翻折得△AFE.(1)如圖①,點F恰好在BC上,求證:△ABF∽△FCE;(2)如圖②,點F在矩形ABCD內(nèi),連接CF,若DE=1,求△EFC的面積;(3)若以點E、F、C為頂點的三角形是直角三角形,則DE的長為.25.(12分)如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.(1)求證:ΔADM∽ΔBMN;(2)求∠DMN的度數(shù).26.如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標(biāo)是.(1)求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo).(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在請說明理由.(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)相似三角形的判定定理對各選項進(jìn)行逐一判定即可.【詳解】A、根據(jù)平行線截得的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形對應(yīng)邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.D、兩三角形的對應(yīng)邊不成比例,故兩三角形不相似,故本選項正確;故選:D.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關(guān)鍵.2、A【詳解】∵拋物線∴a<0,∴開口向下,∴頂點坐標(biāo)(5,3).故選A.3、A【分析】根據(jù),可設(shè)a=2k,則b=3k,代入所求的式子即可求解.【詳解】∵,∴設(shè)a=2k,則b=3k,則原式==.故選:A.【點睛】本題考查了比例的性質(zhì),根據(jù),正確設(shè)出未知數(shù)是本題的關(guān)鍵.4、A【分析】連接FB,根據(jù)已知可得到?△ABC與△AFC是同底等高的三角形,由已知可求得△ABC的面積為大正方形面積的一半,從而不難求得S的值.【詳解】解:連接FB,∵四邊形EFGB為正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC與△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故選A.【點睛】本題利用了正方形的性質(zhì),內(nèi)錯角相等,兩直線平行的判定方法,及同底等高的三角形的面積相等的性質(zhì)求解.5、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機(jī)事件,屬于不確定事件,故選D.考點:隨機(jī)事件.6、B【分析】求出黃區(qū)域圓心角在整個圓中所占的比例,這個比例即為所求的概率.【詳解】∵黃扇形區(qū)域的圓心角為90°,所以黃區(qū)域所占的面積比例為,即轉(zhuǎn)動圓盤一次,指針停在黃區(qū)域的概率是,故選B.【點睛】本題將概率的求解設(shè)置于轉(zhuǎn)動轉(zhuǎn)盤游戲中,考查學(xué)生對簡單幾何概型的掌握情況,既避免了單純依靠公式機(jī)械計算的做法,又體現(xiàn)了數(shù)學(xué)知識在現(xiàn)實生活、甚至娛樂中的運用,體現(xiàn)了數(shù)學(xué)學(xué)科的基礎(chǔ)性.用到的知識點為:概率=相應(yīng)的面積與總面積之比.7、C【分析】利用勾股定理求出△ABC的三邊長,然后根據(jù)勾股定理的逆定理可以得出△ABC為直角三角形,再利用直角三角形斜邊中點的性質(zhì),得出AE=CE,從而得到∠CAE=∠ACB,然后利用三角函數(shù)的定義即可求解.【詳解】解:依題意得,AB=,AC=,BC=,∴AB2+AC2=BC2,
∴△ABC是直角三角形,
又∵E為BC的中點,
∴AE=CE,
∴∠CAE=∠ACB,
∴sin∠CAE=sin∠ACB=.故選:C.【點睛】此題主要考查了三角函數(shù)的定義,也考查了勾股定理及其逆定理,首先根據(jù)圖形利用勾股定理求出三角形的三邊長,然后利用勾股定理的逆定理和三角函數(shù)即可解決問題.8、A【解析】利用正方形的性質(zhì),得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再證明△ABM∽△FDM,即可解答①;根據(jù)題意可知:AF=DE=AE=,再根據(jù)三角函數(shù)即可得出③;作PH⊥AN于H.利用平行線的性質(zhì)求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【詳解】解:∵正方形ABCD的邊長為2,點E是BC的中點,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF與△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正確;根據(jù)題意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正確,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正確,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN與△DPE不相似,故④錯誤.故選:A.【點睛】此題考查三角函數(shù),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì)難度較大,解題關(guān)鍵在于綜合掌握各性質(zhì)9、C【分析】由平移的性質(zhì),分別進(jìn)行判斷,即可得到答案.【詳解】解:由平移的性質(zhì)可知,C選項的圖案是通過平移得到的;A、B、D中的圖案不是平移得到的;故選:C.【點睛】本題考查了平移的性質(zhì),解題的關(guān)鍵是掌握圖案的平移進(jìn)行解題.10、A【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P≈0.17,計算四個選項的概率,約為0.17者即為正確答案.【詳解】解:A、擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4的概率為≈0.17,故A選項正確;B、在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀“的概率為,故B選項錯誤;
C、一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率是:,故C選項錯誤;
D、暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球的概率為,故D選項錯誤;
故選:A.【點睛】此題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.11、B【詳解】解:過點B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.12、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念逐一進(jìn)行分析判斷即可得.【詳解】A.正三角形是軸對稱圖形,不是中心對稱圖形;B.正五邊形是軸對稱圖形,不是中心對稱圖形;C.等腰直角三角形是軸對稱圖形,不是中心對稱圖形;D.矩形是軸對稱圖形,也是中心對稱圖形,故選D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(每題4分,共24分)13、a>或a<.【分析】先確定拋物線的對稱軸,根據(jù)開口的大小與a的關(guān)系,即開口向上時,a>0,且a越大開口越小,開口向下時,a<0,且a越大,開口越大,從而確定a的范圍.【詳解】解:如圖,觀察圖形拋物線y=ax2-4ax+4的對稱軸為直線,設(shè)拋物線與直線l交點(靠近y軸)為(m,3),∵│m│<1,∴-1<m<1.當(dāng)a>0時,若拋物線經(jīng)過點(1,3)時,開口最大,此時a值最小,將點(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=,∴a>;當(dāng)a<0時,若拋物線經(jīng)過點(-1,3)時,開口最大,此時a值最大,將點(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=,∴a<.a的取值范圍是a>或a<.故答案為:a>或a<.【點睛】本題考查拋物線的性質(zhì),首先明確a值與開口的大小關(guān)系,觀察圖形,即數(shù)形結(jié)合的思想是解答此題的關(guān)鍵.14、【分析】由題意可知總共有11個字母,求出字母的個數(shù),利用概率公式進(jìn)行求解即可.【詳解】解:共有個字母,其中有個,所以選中字母“”的概率為.故答案為:.【點睛】本題考查概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、6【分析】根據(jù)正方形的性質(zhì)可得OC∥AB,OB=,從而證出△COQ∽△PBQ,然后根據(jù)相似三角形的性質(zhì)即可求出,從而求出的長.【詳解】解:∵正方形的邊長為8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案為:6.【點睛】此題考查的是正方形的性質(zhì)、相似三角形的判定及性質(zhì),掌握正方形的性質(zhì)、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關(guān)鍵.16、【分析】圖中陰影部分的面積=S△ABC-S扇形AEF.由圓周角定理推知∠BAC=90°.【詳解】解:連接AD,在⊙A中,因為∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S陰影=4-故答案為:【點睛】本題考查了切線的性質(zhì)與扇形面積的計算.求陰影部分的面積時,采用了“分割法”.17、2或1【分析】分兩種情況:(1)容器內(nèi)水的高度在球形容器的球心下面;(2)容器內(nèi)水的高度在球形容器的球心上面;根據(jù)垂徑定理和勾股定理計算即可求解.【詳解】過O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,則OC3(cm).分兩種情況討論:(1)容器內(nèi)水的高度在球形容器的球心下面時,如圖①,延長OC交⊙O于D,容器內(nèi)水的高度為CD=OD﹣CO=5﹣3=2(cm);(2)容器內(nèi)水的高度在球形容器的球心是上面時,如圖②,延長CO交⊙O于D,容器內(nèi)水的高度為CD=OD+CO=5+3=1(cm).則容器內(nèi)水的高度為2cm或1cm.故答案為:2或1.【點睛】本題考查了垂徑定理以及勾股定理,勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.注意分類思想的應(yīng)用.18、【分析】先通過移項將等號右邊多項式移到左邊,再利用提公因式法因式分解,即可得出方程的根.【詳解】解:移項得:提公因式得:解得:;故答案為:.【點睛】本題考查一元二次方程因式分解的解法.在解一元二次方程的時候,一定要先觀察方程的形式,如果遇到了相同的因式,先將他們移到方程等號的一側(cè),看能否利用提公因式解方程,觀察以及積累是快速解題的關(guān)鍵.三、解答題(共78分)19、(1)8,20,2.0≤x<2.4;(2)補(bǔ)圖見解析;(3)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有200人.【解析】(1)根據(jù)題意和統(tǒng)計圖可以求得a、b的值,并得到樣本成績的中位數(shù)所在的取值范圍;(2)根據(jù)b的值可以將頻數(shù)分布直方圖補(bǔ)充完整;(3)用1000乘以樣本中該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生比例即可得.【詳解】(1)由統(tǒng)計圖可得,a=8,b=50﹣8﹣12﹣10=20,樣本成績的中位數(shù)落在:2.0≤x<2.4范圍內(nèi),故答案為:8,20,2.0≤x<2.4;(2)由(1)知,b=20,補(bǔ)全的頻數(shù)分布直方圖如圖所示;(3)1000×=200(人),答:該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有200人.【點睛】本題考查了頻數(shù)分布表、頻數(shù)分布直方圖、中位數(shù)等,讀懂統(tǒng)計圖與統(tǒng)計表,從中找到必要的信息是解題的關(guān)鍵.20、(1);(2)見解析,共9種,;(3)【分析】(1)轉(zhuǎn)動一次有三種可能,出現(xiàn)數(shù)字2只有一種情況,據(jù)此可得出結(jié)果;
(2)根據(jù)題意列表或畫樹狀圖即可得出所有可能的結(jié)果;(3)可以得出只有(1,2)、(2,3)在函數(shù)的圖象上,即可求概率.【詳解】解:(1)根據(jù)題意可得,指針指向的數(shù)字2的概率為;(2)列表,得:或畫樹狀圖,得:由列表或樹狀圖可得可能的情況共有9種,分別為:;(3)解:由題意以及(2)可知:滿足的有:,∴點在函數(shù)y=x+1圖象上的概率為.【點睛】本題考查一次函數(shù)的圖象上的點,等可能事件的概率;能夠列出表格或樹狀圖是解題的關(guān)鍵.21、.【分析】求出AD的長,根據(jù)△ADE∽△ABC,可得,則可求出AE的長.【詳解】解:∵AC=8,D為AC的中點,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.【點睛】本題考查的知識點是相似三角形判定及其性質(zhì),熟記定理和性質(zhì)是解題的關(guān)鍵.22、(1).(2)-3.【分析】(1)把方程化為一般式,根據(jù)方程有兩個實數(shù)根,可得,列出關(guān)于的不等式,解出的范圍即可;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,可得,,再將原等式變形為
,然后整體代入建立關(guān)于的方程,解出值并檢驗即可.【詳解】(1)解:原方程即為.,∴.∴.∴;(2)解:由根系關(guān)系,得,∵,∴∴.即.解得,或∵∴.故答案為(1).(2)-3.【點睛】本題考查一元二次方程根的判別式及應(yīng)用,一元二次方程的根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=,x1x2=.23、(1)詳見解析;(2)詳見解析【分析】(1)連接AD,證明∠BAD=∠CAD即可得出,則結(jié)論得出;(2)在AE上截取EG=CF,連接DG,證明△GED≌△CFD,得出DG=CD,∠EGD=∠C,則可得出結(jié)論△DBG∽△ABC.【詳解】(1)證明:連接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴,∴DE=DF.(2)證明:在AE上截取EG=CF,連接DG,∵四邊形AEDF內(nèi)接于圓,∴∠DFC=∠DEG,∵DE=DF,∴△GED≌△CFD(SAS),∴DG=CD,∠EGD=∠C,∵AB=AC,∴∠B=∠C,∴△DBG∽△ABC,即以線段BE+CF,BD,DC為邊圍成的三角形與△ABC相似.【點睛】本題考查了圓的綜合問題,熟練掌握圓的內(nèi)接四邊形性質(zhì)與相似三角形的判定是解題的關(guān)鍵.24、(1)證明見解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,證明∠CEF=∠AFB,即可解決問題;(2)過點F作FG⊥DC交DC與點G,交AB于點H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①當(dāng)∠EFC=90°時;②當(dāng)∠ECF=90°時;③當(dāng)∠CEF=90°時三種情況討論解答即可.【詳解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折疊可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:過點F作FG⊥DC交DC與點G,交AB于點H,則∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折疊可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴=∴=∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5GF)2+(5-GF)2=52∴GF=∴△EFC的面積為××2=;(3)解:①當(dāng)∠EFC=90°時,A、F、C共線,如圖所示:設(shè)DE=EF=x,則CE=3-x,∵AC=,∴CF=-x,∵∠CFE=∠D=90°,∠DCA=∠DCA,∴△CEF∽△CAD,∴,即,解得:ED=x=;②當(dāng)∠ECF=90°時,如圖所示:∵AD==5,AB=3,∴==4,設(shè)=x,則=3-x,∵∠DCB=∠ABC=90°,∴∽,∴,即,解得:x==;由折疊可得:,設(shè),則,,在RT△中,∵,即92+x2=(x+3)2,解得x==12,∴;③當(dāng)∠CEF=90°時,AD=AF,此時四邊形AFED是正方形,∴AF=AD=DE=5,綜上所述,DE的長為:、5、15、.【點睛】本題考查了翻折的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,掌握翻折的性質(zhì),分類探討的思想方法是解決問題的關(guān)鍵.25、(1)見解析;(2)90°【分析】(1)根據(jù),,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,從而得出∠DMN的度數(shù).【詳解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼管架承包協(xié)議書
- 居間服務(wù)費協(xié)議書
- 小飯桌雙方協(xié)議書
- 租用小口井協(xié)議書
- 孩子棄養(yǎng)權(quán)協(xié)議書
- 機(jī)動車包車協(xié)議書
- 自助售賣機(jī)協(xié)議書
- 給干爹買車協(xié)議書
- 自私男離婚協(xié)議書
- 安易賠服務(wù)協(xié)議書
- 2025越南語等級考試AG級試卷:詞匯辨析與語法應(yīng)用
- 2024年濟(jì)南長清產(chǎn)業(yè)發(fā)展投資控股集團(tuán)有限公司招聘筆試真題
- 2025護(hù)理團(tuán)體標(biāo)準(zhǔn)解讀
- 風(fēng)電場輸變電設(shè)備典型故障及異常處理手冊
- 四川省(蓉城名校聯(lián)盟)新高考2022級高三適應(yīng)性考試語文試題答案
- 人類面臨的主要環(huán)境問題第一課時課件高一下學(xué)期地理湘教版(2019)必修二
- 四川助康新材料有限公司四川助康新材料有限公司年產(chǎn)3.5萬噸環(huán)保型抗菌新材料生產(chǎn)線項目環(huán)評報告
- 企業(yè)抖音陪跑服務(wù)課件
- 2025-2030中國采耳行業(yè)市場深度調(diào)研及競爭格局與投資前景研究報告
- 生物制劑的應(yīng)用及護(hù)理
- 《智能網(wǎng)聯(lián)汽車智能座艙技術(shù)》考試復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論