2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)
2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)
2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)
2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)
2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖北省孝感市普通高中聯(lián)考協(xié)作體高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的離心率,為橢圓上的一個(gè)動(dòng)點(diǎn),若定點(diǎn),則的最大值為A. B.C. D.2.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件3.一組“城市平安建設(shè)”的滿意度測(cè)評(píng)結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標(biāo)準(zhǔn)差不變 D.標(biāo)準(zhǔn)差變大4.是首項(xiàng)和公差均為3的等差數(shù)列,如果,則n等于()A.671 B.672C.673 D.6745.已知命題,,則()A., B.,C., D.,6.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.7.已知等差數(shù)列的公差,是與的等比中項(xiàng),則()A. B.C. D.8.已知圓,則圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為()A.-1 B.C.+1 D.69.《九章算術(shù)》第三章“衰分”介紹比例分配問(wèn)題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.10.如圖所示,為了測(cè)量A,B處島嶼的距離,小張?jiān)贒處觀測(cè),測(cè)得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.1011.正方體中,E、F分別是與的中點(diǎn),則直線ED與所成角的余弦值是()A. B.C. D.12.已知函數(shù),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在點(diǎn)處的切線為直線l,則l與坐標(biāo)軸圍成的三角形面積為_(kāi)__________.14.已知p:x>a是q:2<x<3的必要不充分條件,則實(shí)數(shù)a的取值范圍是______.15.如圖,一個(gè)酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個(gè)表面積為的玻璃球,則球面上的點(diǎn)到杯底的最小距離為_(kāi)_____cm;②在杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為_(kāi)_____(單位:cm)16.已知數(shù)列則是這個(gè)數(shù)列的第________項(xiàng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.18.(12分)已知數(shù)列的首項(xiàng),前n項(xiàng)和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)某中醫(yī)藥研究所研制出一種新型抗過(guò)敏藥物,服用后需要檢驗(yàn)血液抗體是否為陽(yáng)性,現(xiàn)有n(n∈N*)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)n次;②混合檢驗(yàn),將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪份為陽(yáng)性,就需要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陽(yáng)性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽(yáng)性,若采取逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)記為ξ1;采用混合檢驗(yàn)的方式,樣本需要檢驗(yàn)的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求p的值;(ii)若,證明:.20.(12分)已知圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn)M()(1)求圓C的方程;(2)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線的距離的最小值;21.(12分)如圖,在長(zhǎng)方體中,,若點(diǎn)P為棱上一點(diǎn),且,Q,R分別為棱上的點(diǎn),且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.22.(10分)自疫情爆發(fā)以來(lái),由于黨和國(guó)家對(duì)抗疫工作高度重視,在人民群眾的不懈努力下,我國(guó)抗疫工作取得階段性成功,國(guó)家經(jīng)濟(jì)很快得到復(fù)蘇.在餐飲業(yè)恢復(fù)營(yíng)業(yè)后,某快餐店統(tǒng)計(jì)了近天內(nèi)每日接待的顧客人數(shù),將前天的數(shù)據(jù)進(jìn)行整理得到頻率分布表和頻率分布直方圖.組別分組頻數(shù)頻率第組第組第組第組第組合計(jì)(1)求、、的值,并估計(jì)該快餐店在前天內(nèi)每日接待的顧客人數(shù)的平均數(shù);(2)已知該快餐店在前50天內(nèi)每日接待的顧客人數(shù)的方差為,在后天內(nèi)每日接待的顧客人數(shù)的平均數(shù)為、方差為,估計(jì)這家快餐店這天內(nèi)每日接待的顧客人數(shù)的平均數(shù)和方差.()

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點(diǎn)的坐標(biāo)為,則,故:,當(dāng)時(shí),.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查橢圓方程問(wèn)題,橢圓中的最值問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2、A【解析】根據(jù)充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過(guò)來(lái),若,可推出.故“”是“”的充分不必要條件故選:A.3、B【解析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標(biāo)準(zhǔn)差變小.故選:B4、D【解析】根據(jù)題意,求得數(shù)列的通項(xiàng)公式,代入數(shù)據(jù),即可得答案.【詳解】因?yàn)閿?shù)列為等差數(shù)列,所以,令,解得.故選:D5、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.6、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.7、C【解析】由等比中項(xiàng)的性質(zhì)及等差數(shù)列通項(xiàng)公式可得即可求.【詳解】由,則,可得.故選:C.8、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點(diǎn)的距離,從而求出圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點(diǎn)的距離為,故圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離最小值為.故選:A9、A【解析】根據(jù)題意,設(shè)衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據(jù)題意,設(shè)衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A10、C【解析】分別在和中,求得的長(zhǎng)度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因?yàn)?,所以,在中,由余弦定理可得,所?故選:C.11、A【解析】以A為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,D,D1點(diǎn)的坐標(biāo),利用向量求法求解【詳解】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長(zhǎng)為2,則,,,,,直線與所成角的余弦值為:.故選:A【點(diǎn)睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.12、B【解析】求出,代值計(jì)算可得的值.【詳解】因?yàn)椋瑒t,故.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出切線方程,分別得到直線與x、y軸交點(diǎn),即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標(biāo)軸圍成的三角形面積為.故答案為:.14、【解析】根據(jù)充分性和必要性,求得參數(shù)取值范圍,即可求得結(jié)果.【詳解】因?yàn)閜:x>a是q:2<x<3的必要不充分條件,故集合為集合的真子集,故只需.故答案為:.15、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,此時(shí)設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因?yàn)楸诜乓粋€(gè)表面積為的玻璃球,所以球的半徑為,又因?yàn)楸趯抍m,所以如圖1所示,有,所以,所以,所以,又因?yàn)楸?cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點(diǎn)睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運(yùn)算求解能力,是中檔題.本題第二問(wèn)解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問(wèn)題轉(zhuǎn)化為拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立求解.16、12【解析】根據(jù)被開(kāi)方數(shù)的特點(diǎn)求出數(shù)列的通項(xiàng)公式,最后利用通項(xiàng)公式進(jìn)行求解即可.【詳解】數(shù)列中每一項(xiàng)被開(kāi)方數(shù)分別為:6,10,14,18,22,…,因此這些被開(kāi)方數(shù)是以6為首項(xiàng),4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項(xiàng)公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】分析:依題意可知兩兩垂直,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個(gè)平面的法向量,利用兩個(gè)向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點(diǎn)坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個(gè)法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因?yàn)?,,由,?解得平面的一個(gè)法向量,由已知,平面的一個(gè)法向量為,,∴二面角的余弦值是.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.18、(1)證明見(jiàn)解析(2)【解析】(1)當(dāng)時(shí),由,得,兩式相減化簡(jiǎn)可得,再對(duì)等式兩邊同時(shí)減去1,化簡(jiǎn)可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問(wèn)1詳解】由已知得,.當(dāng)時(shí),.兩式相減得,.于是,即,又,,,所以滿足上式,所以對(duì)都成立,故數(shù)列是等比數(shù)列.【小問(wèn)2詳解】由(1)得,,.19、(1);(2)(i);(ii)證明見(jiàn)解析.【解析】(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,由古典概型概率計(jì)算公式可得答案;(2)(i)由已知,可能取值分別為1,,求解概率然后求期望推出關(guān)于的關(guān)系式;(ii)由,計(jì)算出,再由,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的最值可得答案..【詳解】(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,所以前2次檢驗(yàn)中有一陽(yáng)性有一陰性樣本第三次為陽(yáng)性樣本,或者前3次均為陰性樣本,則.(2)(i),所以,可能取值分別為1,,,,因?yàn)榈茫驗(yàn)?,所以?(ii)因?yàn)?,由(i)知,所以,設(shè),,所以在單調(diào)遞增,所以由于,所以,即,得證.【(4)(5)選做】20、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn),求得圓的半徑,利用圓的標(biāo)準(zhǔn)方程,即可求解;(2)由點(diǎn)到直線的距離公式,求得圓心到直線l的距離為,進(jìn)而得到點(diǎn)P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn),所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點(diǎn)睛】本題主要考查了圓標(biāo)準(zhǔn)方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟練應(yīng)用直線與圓的位置關(guān)系合理轉(zhuǎn)化是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.21、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線面角;(2)用空間向量法求二面角【小問(wèn)1詳解】以D為坐標(biāo)原點(diǎn),射線方向?yàn)閤,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時(shí),,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問(wèn)2詳解】在長(zhǎng)方體中,因?yàn)槠矫妫云矫嫫矫?,因?yàn)槠矫媾c平面交于,因?yàn)樗倪呅螢檎叫?,所以,所以平面,即為平面的一個(gè)法向量,,所以,又平面的法向量為,所以.22、(1),,,平均數(shù)為;(2)平均

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論