




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省吉化第一高級(jí)中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《算數(shù)書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.2.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)3.若集合,則=()A. B. C. D.4.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)5.已知三棱錐的體積為2,是邊長(zhǎng)為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.6.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.7.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.8.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.9.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.10.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.11.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.12.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}二、填空題:本題共4小題,每小題5分,共20分。13.命題“對(duì)任意,”的否定是.14.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場(chǎng)比賽,則田忌的馬獲勝的概率為_(kāi)_________.15.已知,滿足約束條件,則的最小值為_(kāi)_________.16.若實(shí)數(shù)滿足不等式組,則的最小值是___三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.18.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.20.(12分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.21.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過(guò)點(diǎn).(1)求橢圓C的方程;(2)過(guò)左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.22.(10分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.2、D【解析】
根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對(duì)稱,即可得到的單調(diào)區(qū)間,利用對(duì)稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對(duì)稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。5、A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.6、D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)椋?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.7、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.8、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長(zhǎng)為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.9、C【解析】
由題意可得面,可知,因?yàn)椋瑒t面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.10、B【解析】
由可得,所以,故選B.11、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)椋?,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.12、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.14、.【解析】分析:由題意結(jié)合古典概型計(jì)算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問(wèn)題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí),要做到不重復(fù)、不遺漏,可借助“樹(shù)狀圖”列舉.(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.15、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過(guò)A點(diǎn)時(shí)目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-1三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析.(2)【解析】
(1)通過(guò)證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以.因?yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)?,所以平面.因?yàn)槠矫妫云矫嫫矫妫?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過(guò)點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)【解析】
對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)椋栽谏虾愠闪?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.19、(1)(2)【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因?yàn)?,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 退訂協(xié)議書范本
- 公司股東合同協(xié)議
- 舊房折建協(xié)議書
- 進(jìn)口車銷售合同協(xié)議
- 連鎖披薩店轉(zhuǎn)讓合同協(xié)議
- 委托代理買房合同書
- 進(jìn)出口牛肉銷售合同協(xié)議
- 《輿論學(xué)》本科筆記
- 轉(zhuǎn)讓合同解除協(xié)議書范本
- 個(gè)體員工合同協(xié)議書
- 《生鮮電商物流配送模式探究的國(guó)內(nèi)外文獻(xiàn)綜述》3400字
- 運(yùn)維服務(wù)項(xiàng)目質(zhì)量保障體系及措施
- 《中華人民共和國(guó)藥品管理法實(shí)施條例》
- 皮影游戲課件教學(xué)課件
- 長(zhǎng)松組織系統(tǒng)培訓(xùn)
- 2024年中考英語(yǔ)高頻詞首字母默寫與短語(yǔ)默寫表及答案
- 徒手防衛(wèi)與控制學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年小學(xué)家長(zhǎng)學(xué)校家庭教育培訓(xùn)內(nèi)容
- 2024-2030年中國(guó)磁化肥行業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資方向研究報(bào)告
- 2024年安徽蕪湖事業(yè)單位聯(lián)考高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024年黑龍江省哈爾濱市中考英語(yǔ)試題卷(含答案及解析)
評(píng)論
0/150
提交評(píng)論